File size: 9,845 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 d206f24 167b103 35da672 d206f24 849209d 12efdad 59ced24 58353ee 59ced24 167b103 35da672 849209d 12efdad 70839bb 58353ee 849209d 167b103 849209d d206f24 849209d d206f24 849209d d206f24 849209d d206f24 849209d d206f24 849209d d206f24 849209d d206f24 849209d d206f24 167b103 58353ee 167b103 849209d d206f24 849209d 35da672 849209d 35da672 d206f24 849209d d206f24 35da672 849209d 35da672 849209d 35da672 849209d 35da672 849209d 35da672 59ced24 849209d 35da672 849209d 35da672 849209d 35da672 849209d 35da672 849209d 35da672 58353ee 35da672 849209d 35da672 58353ee 59ced24 58353ee 59ced24 35da672 59ced24 35da672 59ced24 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 849209d 4b0f1a8 849209d 167b103 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 849209d 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 849209d 4b0f1a8 35da672 849209d 4b0f1a8 59ced24 849209d 35da672 849209d 35da672 849209d 4b0f1a8 59ced24 849209d 35da672 849209d 35da672 849209d 35da672 849209d 8e533b3 70839bb 35da672 849209d 35da672 849209d 35da672 849209d 35da672 849209d 35da672 849209d 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import snapshot_download
from tooluniverse import ToolUniverse
import time
from requests.adapters import HTTPAdapter
from requests import Session
from urllib3.util.retry import Retry
from tqdm import tqdm
# Configuration
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"local_dir": "./models",
"tool_files": {
"new_tool": "./data/new_tool.json"
},
"download_settings": {
"timeout": 600, # 10 minutes per request
"max_retries": 5,
"retry_delay": 30, # seconds between retries
"chunk_size": 1024 * 1024 * 10, # 10MB chunks
"max_concurrent": 2 # concurrent downloads
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def create_optimized_session():
"""Create a session optimized for large file downloads"""
session = Session()
retry_strategy = Retry(
total=CONFIG["download_settings"]["max_retries"],
backoff_factor=1,
status_forcelist=[408, 429, 500, 502, 503, 504]
)
adapter = HTTPAdapter(
max_retries=retry_strategy,
pool_connections=10,
pool_maxsize=10,
pool_block=True
)
session.mount("https://", adapter)
session.mount("http://", adapter)
return session
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def download_model_with_progress(repo_id, local_dir):
custom_session = create_optimized_session()
for attempt in range(CONFIG["download_settings"]["max_retries"] + 1):
try:
logger.info(f"Download attempt {attempt + 1} for {repo_id}")
# Create progress bar
progress = tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
miniters=1,
desc=f"Downloading {repo_id.split('/')[-1]}"
)
def update_progress(monitor):
progress.update(monitor.bytes_read - progress.n)
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
resume_download=True,
local_dir_use_symlinks=False,
use_auth_token=True,
max_workers=CONFIG["download_settings"]["max_concurrent"],
tqdm_class=None, # We handle progress ourselves
session=custom_session
)
progress.close()
return True
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < CONFIG["download_settings"]["max_retries"]:
wait_time = CONFIG["download_settings"]["retry_delay"] * (attempt + 1)
logger.info(f"Waiting {wait_time} seconds before retry...")
time.sleep(wait_time)
else:
progress.close()
return False
def download_model_files():
os.makedirs(CONFIG["local_dir"], exist_ok=True)
logger.info("Starting model downloads...")
# Download main model
if not download_model_with_progress(
CONFIG["model_name"],
os.path.join(CONFIG["local_dir"], CONFIG["model_name"])
):
raise RuntimeError(f"Failed to download {CONFIG['model_name']}")
# Download RAG model
if not download_model_with_progress(
CONFIG["rag_model_name"],
os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"])
):
raise RuntimeError(f"Failed to download {CONFIG['rag_model_name']}")
logger.info("All model files downloaded successfully")
def load_embeddings(agent):
embedding_path = CONFIG["embedding_filename"]
if os.path.exists(embedding_path):
logger.info("✅ Loading pre-generated embeddings file")
try:
embeddings = torch.load(embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
return
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
logger.info("Generating tool embeddings...")
try:
tools = agent.tooluniverse.get_all_tools()
descriptions = [tool["description"] for tool in tools]
embeddings = agent.rag_model.generate_embeddings(descriptions)
torch.save(embeddings, embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
logger.info(f"Embeddings saved to {embedding_path}")
except Exception as e:
logger.error(f"Failed to generate embeddings: {e}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "✅ Already initialized"
try:
# Initialize with progress tracking
with tqdm(total=4, desc="Initializing TxAgent") as pbar:
logger.info("Creating TxAgent instance...")
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
pbar.update(1)
logger.info("Initializing models...")
self.agent.init_model()
pbar.update(1)
logger.info("Loading embeddings...")
load_embeddings(self.agent)
pbar.update(1)
self.is_initialized = True
pbar.update(1)
return "✅ TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "⚠️ Please initialize the model first")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
yield history + [(message, response)]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
yield history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
.progress-bar {height: 20px !important}
"""
) as demo:
gr.Markdown("""
# � TxAgent: Therapeutic Reasoning AI
### Specialized for clinical decision support
""")
# Initialization section
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
download_progress = gr.Textbox(visible=False)
# Chat interface
chatbot = gr.Chatbot(height=500, label="Conversation")
msg = gr.Textbox(label="Your clinical question", placeholder="Ask about drug interactions, dosing, etc...")
clear_btn = gr.Button("Clear Chat")
# Examples
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg,
label="Example Questions"
)
# Event handlers
init_btn.click(
fn=app.initialize,
outputs=init_status
)
msg.submit(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application setup...")
# Prepare files
prepare_tool_files()
# Download models with progress tracking
download_model_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Fatal error: {str(e)}")
raise |