File size: 6,148 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 63950ea 167b103 849209d 12efdad 63950ea 59ced24 63950ea 58353ee 59ced24 167b103 35da672 63950ea 12efdad 70839bb 58353ee 849209d 167b103 58353ee 167b103 35da672 58353ee 35da672 849209d 63950ea 58353ee 59ced24 58353ee 59ced24 35da672 59ced24 35da672 59ced24 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 849209d 4b0f1a8 63950ea 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 849209d 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 849209d 4b0f1a8 35da672 849209d 4b0f1a8 59ced24 849209d 35da672 63950ea 35da672 849209d 4b0f1a8 59ced24 849209d 63950ea 849209d 63950ea 849209d 35da672 849209d 35da672 849209d 35da672 849209d 8e533b3 70839bb 35da672 63950ea 849209d 63950ea 35da672 849209d 35da672 849209d 35da672 849209d 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import hf_hub_download
from tooluniverse import ToolUniverse
from tqdm import tqdm
# Configuration - Now using remote Hugging Face models
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"new_tool": "./data/new_tool.json"
},
"load_from_hub": True # Flag to load directly from Hugging Face
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def load_embeddings(agent):
embedding_path = CONFIG["embedding_filename"]
if os.path.exists(embedding_path):
logger.info("✅ Loading pre-generated embeddings file")
try:
embeddings = torch.load(embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
return
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
logger.info("Generating tool embeddings from remote model...")
try:
tools = agent.tooluniverse.get_all_tools()
descriptions = [tool["description"] for tool in tools]
embeddings = agent.rag_model.generate_embeddings(descriptions)
torch.save(embeddings, embedding_path)
agent.rag_model.tool_desc_embedding = embeddings
logger.info(f"Embeddings saved to {embedding_path}")
except Exception as e:
logger.error(f"Failed to generate embeddings: {e}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "✅ Already initialized"
try:
logger.info("Initializing TxAgent with remote models...")
# Initialize with remote models
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"],
local_files_only=False # Force loading from Hugging Face Hub
)
logger.info("Loading remote models...")
self.agent.init_model()
logger.info("Preparing embeddings...")
load_embeddings(self.agent)
self.is_initialized = True
return "✅ TxAgent initialized successfully (using remote models)"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "⚠️ Please initialize the model first")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
yield history + [(message, response)]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
yield history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# 🧠 TxAgent: Therapeutic Reasoning AI
### (Running with remote Hugging Face models)
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(height=500, label="Conversation")
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
init_btn.click(
fn=app.initialize,
outputs=init_status
)
msg.submit(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Prepare local tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Fatal error: {str(e)}")
raise |