File size: 6,148 Bytes
4b0f1a8
167b103
 
b8c0ae3
59ced24
 
63950ea
167b103
849209d
12efdad
63950ea
59ced24
 
63950ea
58353ee
59ced24
167b103
35da672
63950ea
12efdad
70839bb
58353ee
849209d
 
 
 
167b103
 
 
 
 
58353ee
167b103
 
 
 
 
 
35da672
 
58353ee
35da672
 
 
 
 
 
 
849209d
63950ea
58353ee
59ced24
58353ee
 
 
59ced24
35da672
59ced24
35da672
59ced24
12efdad
59ced24
4b0f1a8
 
 
12efdad
59ced24
4b0f1a8
849209d
 
4b0f1a8
63950ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b0f1a8
35da672
167b103
4b0f1a8
59ced24
4b0f1a8
849209d
 
4b0f1a8
e014e82
4b0f1a8
167b103
 
92abf33
 
4b0f1a8
 
 
 
 
e014e82
849209d
 
4b0f1a8
35da672
849209d
4b0f1a8
 
59ced24
849209d
 
 
 
 
 
 
35da672
63950ea
 
35da672
849209d
4b0f1a8
59ced24
849209d
 
 
63950ea
849209d
 
 
 
 
 
 
 
63950ea
849209d
 
35da672
 
849209d
35da672
849209d
35da672
 
 
 
 
849209d
 
 
 
 
 
8e533b3
70839bb
 
35da672
63950ea
849209d
63950ea
35da672
 
849209d
35da672
 
 
 
849209d
35da672
 
849209d
35da672
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import hf_hub_download
from tooluniverse import ToolUniverse
from tqdm import tqdm

# Configuration - Now using remote Hugging Face models
CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", 
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
    "tool_files": {
        "new_tool": "./data/new_tool.json"
    },
    "load_from_hub": True  # Flag to load directly from Hugging Face
}

# Logging setup
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def prepare_tool_files():
    os.makedirs("./data", exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list using ToolUniverse...")
        tu = ToolUniverse()
        tools = tu.get_all_tools()
        with open(CONFIG["tool_files"]["new_tool"], "w") as f:
            json.dump(tools, f, indent=2)
        logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")

def load_embeddings(agent):
    embedding_path = CONFIG["embedding_filename"]
    if os.path.exists(embedding_path):
        logger.info("✅ Loading pre-generated embeddings file")
        try:
            embeddings = torch.load(embedding_path)
            agent.rag_model.tool_desc_embedding = embeddings
            return
        except Exception as e:
            logger.error(f"Failed to load embeddings: {e}")
    
    logger.info("Generating tool embeddings from remote model...")
    try:
        tools = agent.tooluniverse.get_all_tools()
        descriptions = [tool["description"] for tool in tools]
        embeddings = agent.rag_model.generate_embeddings(descriptions)
        torch.save(embeddings, embedding_path)
        agent.rag_model.tool_desc_embedding = embeddings
        logger.info(f"Embeddings saved to {embedding_path}")
    except Exception as e:
        logger.error(f"Failed to generate embeddings: {e}")
        raise

class TxAgentApp:
    def __init__(self):
        self.agent = None
        self.is_initialized = False

    def initialize(self):
        if self.is_initialized:
            return "✅ Already initialized"
        
        try:
            logger.info("Initializing TxAgent with remote models...")
            
            # Initialize with remote models
            self.agent = TxAgent(
                CONFIG["model_name"],
                CONFIG["rag_model_name"],
                tool_files_dict=CONFIG["tool_files"],
                force_finish=True,
                enable_checker=True,
                step_rag_num=10,
                seed=100,
                additional_default_tools=["DirectResponse", "RequireClarification"],
                local_files_only=False  # Force loading from Hugging Face Hub
            )
            
            logger.info("Loading remote models...")
            self.agent.init_model()
            
            logger.info("Preparing embeddings...")
            load_embeddings(self.agent)
            
            self.is_initialized = True
            return "✅ TxAgent initialized successfully (using remote models)"
        except Exception as e:
            logger.error(f"Initialization failed: {str(e)}")
            return f"❌ Initialization failed: {str(e)}"

    def chat(self, message, history):
        if not self.is_initialized:
            return history + [(message, "⚠️ Please initialize the model first")]
        
        try:
            response = ""
            for chunk in self.agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=0.3,
                max_new_tokens=1024,
                max_tokens=8192,
                multi_agent=False,
                conversation=[],
                max_round=30
            ):
                response += chunk
                yield history + [(message, response)]
                
        except Exception as e:
            logger.error(f"Chat error: {str(e)}")
            yield history + [(message, f"Error: {str(e)}")]

def create_interface():
    app = TxAgentApp()
    
    with gr.Blocks(
        title="TxAgent",
        css="""
        .gradio-container {max-width: 900px !important}
        """
    ) as demo:
        gr.Markdown("""
        # 🧠 TxAgent: Therapeutic Reasoning AI
        ### (Running with remote Hugging Face models)
        """)
        
        with gr.Row():
            init_btn = gr.Button("Initialize Model", variant="primary")
            init_status = gr.Textbox(label="Status", interactive=False)
        
        chatbot = gr.Chatbot(height=500, label="Conversation")
        msg = gr.Textbox(label="Your clinical question")
        clear_btn = gr.Button("Clear Chat")
        
        gr.Examples(
            examples=[
                "How to adjust Journavx for renal impairment?",
                "Xolremdi and Prozac interaction in WHIM syndrome?",
                "Alternative to Warfarin for patient with amiodarone?"
            ],
            inputs=msg
        )
        
        init_btn.click(
            fn=app.initialize,
            outputs=init_status
        )
        
        msg.submit(
            fn=app.chat,
            inputs=[msg, chatbot],
            outputs=chatbot
        )
        
        clear_btn.click(
            fn=lambda: ([], ""),
            outputs=[chatbot, msg]
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Starting application...")
        
        # Prepare local tool files
        prepare_tool_files()
        
        # Launch interface
        interface = create_interface()
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
    except Exception as e:
        logger.error(f"Fatal error: {str(e)}")
        raise