File size: 5,113 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 167b103 12efdad 59ced24 037141b 59ced24 167b103 4b0f1a8 12efdad 70839bb 037141b 167b103 59ced24 037141b 167b103 59ced24 167b103 59ced24 037141b 59ced24 037141b 59ced24 037141b 59ced24 037141b 59ced24 037141b 59ced24 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 59ced24 167b103 4b0f1a8 59ced24 167b103 4b0f1a8 59ced24 4b0f1a8 167b103 4b0f1a8 167b103 4b0f1a8 59ced24 4b0f1a8 167b103 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 59ced24 4b0f1a8 59ced24 4b0f1a8 59ced24 167b103 4b0f1a8 59ced24 167b103 59ced24 167b103 4b0f1a8 59ced24 4b0f1a8 167b103 8e533b3 70839bb 167b103 59ced24 167b103 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from tooluniverse import ToolUniverse
# Configuration
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_e27fb393f3144ec28f620f33d4d79911.pt",
"local_dir": "./models",
"tool_files": {
"new_tool": "./data/new_tool.json"
}
}
# Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def download_model_files():
os.makedirs(CONFIG["local_dir"], exist_ok=True)
logger.info("Downloading model files...")
snapshot_download(
repo_id=CONFIG["model_name"],
local_dir=os.path.join(CONFIG["local_dir"], CONFIG["model_name"]),
resume_download=True
)
snapshot_download(
repo_id=CONFIG["rag_model_name"],
local_dir=os.path.join(CONFIG["local_dir"], CONFIG["rag_model_name"]),
resume_download=True
)
def generate_embeddings(agent):
"""Generates and assigns embeddings manually"""
path = os.path.join(CONFIG["local_dir"], CONFIG["embedding_filename"])
try:
if os.path.exists(path):
logger.info("Embedding file already exists, loading...")
agent.rag_model.tool_desc_embedding = torch.load(path)
return
logger.info("Generating embeddings and saving...")
tools = agent.tooluniverse.get_all_tools()
descs = [t["description"] for t in tools]
embeddings = agent.rag_model.generate_embeddings(descs)
torch.save(embeddings, path)
agent.rag_model.tool_desc_embedding = embeddings
logger.info("✅ Embeddings generated and saved")
except Exception as e:
logger.error(f"Failed to generate embeddings: {e}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "Already initialized"
try:
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
self.agent.init_model()
generate_embeddings(self.agent)
self.is_initialized = True
return "✅ TxAgent initialized successfully"
except Exception as e:
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "⚠️ Error: Model not initialized")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
return history + [(message, response)]
except Exception as e:
return history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(title="TxAgent") as demo:
gr.Markdown("# 🧠 TxAgent: Therapeutic Reasoning AI")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Initialization Status")
chatbot = gr.Chatbot(height=600, label="Conversation")
msg = gr.Textbox(label="Your Question")
submit_btn = gr.Button("Submit")
gr.Examples(
examples=[
"How to adjust Journavx dosage for hepatic impairment?",
"Is Xolremdi safe with Prozac for WHIM syndrome?",
"Warfarin-Amiodarone contraindications?"
],
inputs=msg
)
init_btn.click(fn=app.initialize, outputs=init_status)
msg.submit(fn=app.chat, inputs=[msg, chatbot], outputs=chatbot)
submit_btn.click(fn=app.chat, inputs=[msg, chatbot], outputs=chatbot)
return demo
if __name__ == "__main__":
prepare_tool_files()
download_model_files()
interface = create_interface()
interface.launch(server_name="0.0.0.0", server_port=7860, share=False)
|