File size: 7,826 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 167b103 12efdad f2d6e83 59ced24 a87f861 f2d6e83 59ced24 167b103 a87f861 12efdad 70839bb 58353ee 849209d 167b103 58353ee 167b103 1ee16da f2d6e83 1ee16da f2d6e83 1ee16da f2d6e83 1ee16da 12efdad 59ced24 4b0f1a8 12efdad 59ced24 4b0f1a8 849209d 4b0f1a8 f2d6e83 1ee16da 63950ea f2d6e83 63950ea a87f861 63950ea dffc0b0 63950ea dffc0b0 4b0f1a8 35da672 167b103 4b0f1a8 59ced24 4b0f1a8 849209d 4b0f1a8 e014e82 4b0f1a8 167b103 92abf33 4b0f1a8 e014e82 849209d 4b0f1a8 35da672 849209d 4b0f1a8 59ced24 849209d 35da672 63950ea f2d6e83 35da672 849209d 4b0f1a8 59ced24 849209d 1ee16da 63950ea 849209d 63950ea 849209d 35da672 849209d 35da672 849209d 35da672 849209d 8e533b3 70839bb 35da672 63950ea 849209d dffc0b0 35da672 849209d 35da672 849209d 35da672 dffc0b0 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from tooluniverse import ToolUniverse
# Configuration with hardcoded embedding file
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"new_tool": "./data/new_tool.json"
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools()
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def patch_embedding_loading():
"""Monkey-patch the embedding loading functionality"""
try:
# Try to get the RAG model class dynamically
from txagent.txagent import TxAgent as TxAgentClass
original_init = TxAgentClass.__init__
def patched_init(self, *args, **kwargs):
# First let the original initialization happen
original_init(self, *args, **kwargs)
# Then handle the embeddings our way
try:
if os.path.exists(CONFIG["embedding_filename"]):
logger.info(f"Loading embeddings from {CONFIG['embedding_filename']}")
self.rag_model.tool_desc_embedding = torch.load(CONFIG["embedding_filename"])
# Handle tool count mismatch
tools = self.tooluniverse.get_all_tools()
current_count = len(tools)
embedding_count = len(self.rag_model.tool_desc_embedding)
if current_count != embedding_count:
logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
if current_count < embedding_count:
self.rag_model.tool_desc_embedding = self.rag_model.tool_desc_embedding[:current_count]
logger.info(f"Truncated embeddings to match {current_count} tools")
else:
last_embedding = self.rag_model.tool_desc_embedding[-1]
padding = [last_embedding] * (current_count - embedding_count)
self.rag_model.tool_desc_embedding = torch.cat(
[self.rag_model.tool_desc_embedding] + padding
)
logger.info(f"Padded embeddings to match {current_count} tools")
else:
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
# Apply the patch
TxAgentClass.__init__ = patched_init
logger.info("Successfully patched embedding loading")
except Exception as e:
logger.error(f"Failed to patch embedding loading: {str(e)}")
raise
class TxAgentApp:
def __init__(self):
self.agent = None
self.is_initialized = False
def initialize(self):
if self.is_initialized:
return "✅ Already initialized"
try:
# Apply our patch before initialization
patch_embedding_loading()
logger.info("Initializing TxAgent...")
self.agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
logger.info("Loading models...")
self.agent.init_model()
self.is_initialized = True
return "✅ TxAgent initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"❌ Initialization failed: {str(e)}"
def chat(self, message, history):
if not self.is_initialized:
return history + [(message, "⚠️ Please initialize the model first")]
try:
response = ""
for chunk in self.agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_tokens=8192,
multi_agent=False,
conversation=[],
max_round=30
):
response += chunk
yield history + [(message, response)]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
yield history + [(message, f"Error: {str(e)}")]
def create_interface():
app = TxAgentApp()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# 🧠 TxAgent: Therapeutic Reasoning AI
### (Using pre-loaded embeddings)
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(
height=500,
label="Conversation",
type="messages" # Fixing the deprecation warning
)
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
init_btn.click(
fn=app.initialize,
outputs=init_status
)
msg.submit(
fn=app.chat,
inputs=[msg, chatbot],
outputs=chatbot
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Verify embedding file exists
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
logger.info("Please ensure the file is in the root directory")
else:
logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
# Prepare tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise |