File size: 7,826 Bytes
4b0f1a8
167b103
 
b8c0ae3
59ced24
 
167b103
12efdad
f2d6e83
59ced24
 
a87f861
f2d6e83
59ced24
167b103
a87f861
12efdad
70839bb
58353ee
849209d
 
 
 
167b103
 
 
 
 
58353ee
167b103
 
 
 
 
 
1ee16da
 
 
 
 
 
 
 
 
 
f2d6e83
1ee16da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d6e83
1ee16da
f2d6e83
1ee16da
 
 
 
 
 
 
 
 
 
12efdad
59ced24
4b0f1a8
 
 
12efdad
59ced24
4b0f1a8
849209d
 
4b0f1a8
f2d6e83
1ee16da
63950ea
f2d6e83
63950ea
 
 
 
 
 
 
 
a87f861
63950ea
 
dffc0b0
63950ea
 
 
dffc0b0
 
4b0f1a8
35da672
167b103
4b0f1a8
59ced24
4b0f1a8
849209d
 
4b0f1a8
e014e82
4b0f1a8
167b103
 
92abf33
 
4b0f1a8
 
 
 
 
e014e82
849209d
 
4b0f1a8
35da672
849209d
4b0f1a8
 
59ced24
849209d
 
 
 
 
 
 
35da672
63950ea
f2d6e83
35da672
849209d
4b0f1a8
59ced24
849209d
 
1ee16da
 
 
 
 
63950ea
849209d
 
 
 
 
 
 
 
63950ea
849209d
 
35da672
 
849209d
35da672
849209d
35da672
 
 
 
 
849209d
 
 
 
 
 
8e533b3
70839bb
 
35da672
63950ea
849209d
dffc0b0
 
 
 
 
 
 
 
35da672
 
849209d
35da672
 
 
 
849209d
35da672
 
dffc0b0
35da672
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import json
import logging
import torch
from txagent import TxAgent
import gradio as gr
from tooluniverse import ToolUniverse

# Configuration with hardcoded embedding file
CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
    "tool_files": {
        "new_tool": "./data/new_tool.json"
    }
}

# Logging setup
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def prepare_tool_files():
    os.makedirs("./data", exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list using ToolUniverse...")
        tu = ToolUniverse()
        tools = tu.get_all_tools()
        with open(CONFIG["tool_files"]["new_tool"], "w") as f:
            json.dump(tools, f, indent=2)
        logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")

def patch_embedding_loading():
    """Monkey-patch the embedding loading functionality"""
    try:
        # Try to get the RAG model class dynamically
        from txagent.txagent import TxAgent as TxAgentClass
        original_init = TxAgentClass.__init__
        
        def patched_init(self, *args, **kwargs):
            # First let the original initialization happen
            original_init(self, *args, **kwargs)
            
            # Then handle the embeddings our way
            try:
                if os.path.exists(CONFIG["embedding_filename"]):
                    logger.info(f"Loading embeddings from {CONFIG['embedding_filename']}")
                    self.rag_model.tool_desc_embedding = torch.load(CONFIG["embedding_filename"])
                    
                    # Handle tool count mismatch
                    tools = self.tooluniverse.get_all_tools()
                    current_count = len(tools)
                    embedding_count = len(self.rag_model.tool_desc_embedding)
                    
                    if current_count != embedding_count:
                        logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
                        
                        if current_count < embedding_count:
                            self.rag_model.tool_desc_embedding = self.rag_model.tool_desc_embedding[:current_count]
                            logger.info(f"Truncated embeddings to match {current_count} tools")
                        else:
                            last_embedding = self.rag_model.tool_desc_embedding[-1]
                            padding = [last_embedding] * (current_count - embedding_count)
                            self.rag_model.tool_desc_embedding = torch.cat(
                                [self.rag_model.tool_desc_embedding] + padding
                            )
                            logger.info(f"Padded embeddings to match {current_count} tools")
                else:
                    logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
            
            except Exception as e:
                logger.error(f"Failed to load embeddings: {str(e)}")
        
        # Apply the patch
        TxAgentClass.__init__ = patched_init
        logger.info("Successfully patched embedding loading")
        
    except Exception as e:
        logger.error(f"Failed to patch embedding loading: {str(e)}")
        raise

class TxAgentApp:
    def __init__(self):
        self.agent = None
        self.is_initialized = False

    def initialize(self):
        if self.is_initialized:
            return "✅ Already initialized"
        
        try:
            # Apply our patch before initialization
            patch_embedding_loading()
            
            logger.info("Initializing TxAgent...")
            self.agent = TxAgent(
                CONFIG["model_name"],
                CONFIG["rag_model_name"],
                tool_files_dict=CONFIG["tool_files"],
                force_finish=True,
                enable_checker=True,
                step_rag_num=10,
                seed=100,
                additional_default_tools=["DirectResponse", "RequireClarification"]
            )
            
            logger.info("Loading models...")
            self.agent.init_model()
            
            self.is_initialized = True
            return "✅ TxAgent initialized successfully"
            
        except Exception as e:
            logger.error(f"Initialization failed: {str(e)}")
            return f"❌ Initialization failed: {str(e)}"

    def chat(self, message, history):
        if not self.is_initialized:
            return history + [(message, "⚠️ Please initialize the model first")]
        
        try:
            response = ""
            for chunk in self.agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=0.3,
                max_new_tokens=1024,
                max_tokens=8192,
                multi_agent=False,
                conversation=[],
                max_round=30
            ):
                response += chunk
                yield history + [(message, response)]
                
        except Exception as e:
            logger.error(f"Chat error: {str(e)}")
            yield history + [(message, f"Error: {str(e)}")]

def create_interface():
    app = TxAgentApp()
    
    with gr.Blocks(
        title="TxAgent",
        css="""
        .gradio-container {max-width: 900px !important}
        """
    ) as demo:
        gr.Markdown("""
        # 🧠 TxAgent: Therapeutic Reasoning AI
        ### (Using pre-loaded embeddings)
        """)
        
        with gr.Row():
            init_btn = gr.Button("Initialize Model", variant="primary")
            init_status = gr.Textbox(label="Status", interactive=False)
        
        chatbot = gr.Chatbot(
            height=500, 
            label="Conversation",
            type="messages"  # Fixing the deprecation warning
        )
        msg = gr.Textbox(label="Your clinical question")
        clear_btn = gr.Button("Clear Chat")
        
        gr.Examples(
            examples=[
                "How to adjust Journavx for renal impairment?",
                "Xolremdi and Prozac interaction in WHIM syndrome?",
                "Alternative to Warfarin for patient with amiodarone?"
            ],
            inputs=msg
        )
        
        init_btn.click(
            fn=app.initialize,
            outputs=init_status
        )
        
        msg.submit(
            fn=app.chat,
            inputs=[msg, chatbot],
            outputs=chatbot
        )
        
        clear_btn.click(
            fn=lambda: ([], ""),
            outputs=[chatbot, msg]
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Starting application...")
        
        # Verify embedding file exists
        if not os.path.exists(CONFIG["embedding_filename"]):
            logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
            logger.info("Please ensure the file is in the root directory")
        else:
            logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
        
        # Prepare tool files
        prepare_tool_files()
        
        # Launch interface
        interface = create_interface()
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
    except Exception as e:
        logger.error(f"Application failed to start: {str(e)}")
        raise