File size: 6,018 Bytes
1155704
8c814cd
47f0902
9aeb1dd
3f69fbe
16f16a5
 
 
 
 
a604b33
6604d0d
1729ddc
4b98818
3f76413
16f16a5
 
3f76413
 
4b98818
40ad293
0cec600
 
1155704
0cec600
40ad293
0cec600
 
40ad293
0cec600
 
40ad293
47f0902
 
0cec600
47f0902
 
0cec600
47f0902
 
0cec600
47f0902
0cec600
 
47f0902
0cec600
 
 
 
 
 
 
 
 
 
 
 
 
1155704
 
0cec600
 
40ad293
47f0902
 
0cec600
47f0902
0cec600
 
47f0902
 
 
 
0cec600
3f69fbe
6309d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f69fbe
bb37713
3f69fbe
bb37713
 
 
 
 
 
 
 
 
3f69fbe
bb37713
3f69fbe
bb37713
6309d92
 
 
61f2003
bb37713
 
 
 
 
 
 
 
6309d92
 
3f69fbe
6309d92
 
6984a72
 
6309d92
 
3f69fbe
6309d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f69fbe
1a24cb0
3f69fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import sys
import random
import gradio as gr
from multiprocessing import freeze_support

# βœ… Fix path first (before importing anything custom)
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "src"))

# βœ… Now import the correct module
import importlib
import txagent.txagent
importlib.reload(txagent.txagent)
from txagent.txagent import TxAgent

# βœ… Confirm
import inspect
print(">>> TxAgent loaded from:", inspect.getfile(TxAgent))
print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat"))

# === Environment setup ===
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# === UI constants ===
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools</h1>
</div>
'''

INTRO = "Precision therapeutics require multimodal adaptive models..."
LICENSE = "DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE..."

PLACEHOLDER = '''
<div style="padding: 30px; text-align: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
   <p style="font-size: 18px;">Click clear πŸ—‘οΈ before asking a new question.</p>
   <p style="font-size: 18px;">Click retry πŸ”„ to see another answer.</p>
</div>
'''

css = """
h1 { text-align: center; }
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
.gradio-accordion {
    margin-top: 0px !important;
    margin-bottom: 0px !important;
}
"""

chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""

# === Model and tool config ===
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
new_tool_files = {
    "new_tool": os.path.join(current_dir, "data", "new_tool.json")
}

question_examples = [
    ["Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering moderate hepatic impairment?"],
    ["A 30-year-old patient is on Prozac for depression and now diagnosed with WHIM syndrome. Is Xolremdi suitable?"]
]

def create_ui(agent):
    with gr.Blocks(css=css) as demo:
        gr.Markdown(DESCRIPTION)
        gr.Markdown(INTRO)

        temperature = gr.Slider(0, 1, step=0.1, value=0.3, label="Temperature")
        max_new_tokens = gr.Slider(128, 4096, step=1, value=1024, label="Max New Tokens")
        max_tokens = gr.Slider(128, 32000, step=1, value=8192, label="Max Total Tokens")
        max_round = gr.Slider(1, 50, step=1, value=30, label="Max Rounds")
        multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
        conversation_state = gr.State([])

        chatbot = gr.Chatbot(
            label="TxAgent",
            placeholder=PLACEHOLDER,
            height=700,
            type="messages",
            show_copy_button=True
        )

        # === Chat handler (streaming) ===
        async def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
            response = await agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                max_token=max_tokens,
                call_agent=multi_agent,
                conversation=conversation,
                max_round=max_round
            )
            return response

        # === Retry handler ===
        async def handle_retry(history, retry_data, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
            agent.update_parameters(seed=random.randint(0, 10000))
            new_history = history[:retry_data.index]
            prompt = history[retry_data.index]["content"]
            return await agent.run_gradio_chat(
                message=prompt,
                history=new_history,
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                max_token=max_tokens,
                call_agent=multi_agent,
                conversation=conversation,
                max_round=max_round
            )

        # Configure retry button
        chatbot.retry(
            handle_retry,
            inputs=[chatbot, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round],
            outputs=chatbot
        )

        # === Chat Interface setup ===
        gr.ChatInterface(
            fn=handle_chat,
            chatbot=chatbot,
            additional_inputs=[
                temperature, max_new_tokens, max_tokens,
                multi_agent, conversation_state, max_round
            ],
            examples=question_examples,
            css=chat_css,
            cache_examples=False,
            fill_height=True,
            fill_width=True,
            stop_btn=True
        )

        gr.Markdown(LICENSE)
    return demo

if __name__ == "__main__":
    freeze_support()
    
    try:
        # Initialize agent
        agent = TxAgent(
            model_name,
            rag_model_name,
            tool_files_dict=new_tool_files,
            force_finish=True,
            enable_checker=True,
            step_rag_num=10,
            seed=100,
            additional_default_tools=["DirectResponse", "RequireClarification"]
        )
        agent.init_model()
        
        # Verify the agent has the required method
        if not hasattr(agent, 'run_gradio_chat'):
            raise AttributeError("The TxAgent instance is missing the run_gradio_chat method!")
        
        # Create and launch UI
        demo = create_ui(agent)
        demo.launch(show_error=True)
        
    except Exception as e:
        print(f"Application failed to start: {str(e)}")
        raise