File size: 6,018 Bytes
1155704 8c814cd 47f0902 9aeb1dd 3f69fbe 16f16a5 a604b33 6604d0d 1729ddc 4b98818 3f76413 16f16a5 3f76413 4b98818 40ad293 0cec600 1155704 0cec600 40ad293 0cec600 40ad293 0cec600 40ad293 47f0902 0cec600 47f0902 0cec600 47f0902 0cec600 47f0902 0cec600 47f0902 0cec600 1155704 0cec600 40ad293 47f0902 0cec600 47f0902 0cec600 47f0902 0cec600 3f69fbe 6309d92 3f69fbe bb37713 3f69fbe bb37713 3f69fbe bb37713 3f69fbe bb37713 6309d92 61f2003 bb37713 6309d92 3f69fbe 6309d92 6984a72 6309d92 3f69fbe 6309d92 3f69fbe 1a24cb0 3f69fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import sys
import random
import gradio as gr
from multiprocessing import freeze_support
# β
Fix path first (before importing anything custom)
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "src"))
# β
Now import the correct module
import importlib
import txagent.txagent
importlib.reload(txagent.txagent)
from txagent.txagent import TxAgent
# β
Confirm
import inspect
print(">>> TxAgent loaded from:", inspect.getfile(TxAgent))
print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat"))
# === Environment setup ===
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# === UI constants ===
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools</h1>
</div>
'''
INTRO = "Precision therapeutics require multimodal adaptive models..."
LICENSE = "DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE..."
PLACEHOLDER = '''
<div style="padding: 30px; text-align: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
<p style="font-size: 18px;">Click clear ποΈ before asking a new question.</p>
<p style="font-size: 18px;">Click retry π to see another answer.</p>
</div>
'''
css = """
h1 { text-align: center; }
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
.gradio-accordion {
margin-top: 0px !important;
margin-bottom: 0px !important;
}
"""
chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""
# === Model and tool config ===
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
new_tool_files = {
"new_tool": os.path.join(current_dir, "data", "new_tool.json")
}
question_examples = [
["Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering moderate hepatic impairment?"],
["A 30-year-old patient is on Prozac for depression and now diagnosed with WHIM syndrome. Is Xolremdi suitable?"]
]
def create_ui(agent):
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(INTRO)
temperature = gr.Slider(0, 1, step=0.1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, step=1, value=1024, label="Max New Tokens")
max_tokens = gr.Slider(128, 32000, step=1, value=8192, label="Max Total Tokens")
max_round = gr.Slider(1, 50, step=1, value=30, label="Max Rounds")
multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
conversation_state = gr.State([])
chatbot = gr.Chatbot(
label="TxAgent",
placeholder=PLACEHOLDER,
height=700,
type="messages",
show_copy_button=True
)
# === Chat handler (streaming) ===
async def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
response = await agent.run_gradio_chat(
message=message,
history=history,
temperature=temperature,
max_new_tokens=max_new_tokens,
max_token=max_tokens,
call_agent=multi_agent,
conversation=conversation,
max_round=max_round
)
return response
# === Retry handler ===
async def handle_retry(history, retry_data, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
agent.update_parameters(seed=random.randint(0, 10000))
new_history = history[:retry_data.index]
prompt = history[retry_data.index]["content"]
return await agent.run_gradio_chat(
message=prompt,
history=new_history,
temperature=temperature,
max_new_tokens=max_new_tokens,
max_token=max_tokens,
call_agent=multi_agent,
conversation=conversation,
max_round=max_round
)
# Configure retry button
chatbot.retry(
handle_retry,
inputs=[chatbot, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round],
outputs=chatbot
)
# === Chat Interface setup ===
gr.ChatInterface(
fn=handle_chat,
chatbot=chatbot,
additional_inputs=[
temperature, max_new_tokens, max_tokens,
multi_agent, conversation_state, max_round
],
examples=question_examples,
css=chat_css,
cache_examples=False,
fill_height=True,
fill_width=True,
stop_btn=True
)
gr.Markdown(LICENSE)
return demo
if __name__ == "__main__":
freeze_support()
try:
# Initialize agent
agent = TxAgent(
model_name,
rag_model_name,
tool_files_dict=new_tool_files,
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
agent.init_model()
# Verify the agent has the required method
if not hasattr(agent, 'run_gradio_chat'):
raise AttributeError("The TxAgent instance is missing the run_gradio_chat method!")
# Create and launch UI
demo = create_ui(agent)
demo.launch(show_error=True)
except Exception as e:
print(f"Application failed to start: {str(e)}")
raise |