Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +123 -34
src/streamlit_app.py
CHANGED
@@ -1,40 +1,129 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
|
|
3 |
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.docstore.document import Document
|
6 |
+
from langchain_community.retrievers import BM25Retriever
|
7 |
+
from langchain.tools import Tool
|
8 |
+
from langgraph.graph.message import add_messages
|
9 |
+
from langgraph.graph import START, StateGraph
|
10 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
11 |
+
from langchain_core.messages import AnyMessage, HumanMessage
|
12 |
+
from langchain_groq import ChatGroq
|
13 |
+
from typing import TypedDict, Annotated
|
14 |
+
import fitz # PyMuPDF
|
15 |
|
16 |
+
# Load .env vars
|
17 |
+
load_dotenv()
|
18 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
19 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
20 |
+
|
21 |
+
# --- PDF uploader and parser ---
|
22 |
+
def parse_pdfs(uploaded_files):
|
23 |
+
pdf_docs = []
|
24 |
+
for uploaded_file in uploaded_files:
|
25 |
+
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
26 |
+
text = ""
|
27 |
+
for page in doc:
|
28 |
+
text += page.get_text()
|
29 |
+
pdf_docs.append(Document(page_content=text, metadata={"source": uploaded_file.name}))
|
30 |
+
return pdf_docs
|
31 |
+
|
32 |
+
# --- Guest info retrieval ---
|
33 |
+
def build_retriever(all_docs):
|
34 |
+
return BM25Retriever.from_documents(all_docs)
|
35 |
+
|
36 |
+
def extract_text(query: str, retriever):
|
37 |
+
results = retriever.invoke(query)
|
38 |
+
if results:
|
39 |
+
return "\n\n".join([doc.page_content for doc in results[:3]])
|
40 |
+
else:
|
41 |
+
return "لم يتم العثور على معلومات مطابقة في الملفات."
|
42 |
+
|
43 |
+
|
44 |
+
# --- Streamlit UI ---
|
45 |
+
st.set_page_config(page_title="NINU Agent", page_icon="🏛️")
|
46 |
+
st.title("🏛️ NINU - Guest & PDF Assistant")
|
47 |
+
|
48 |
+
st.markdown("** Hint:** NINU can help summarize lectures and quiz you step-by-step in simple English.")
|
49 |
+
|
50 |
+
# Initialize session state to hold conversation history
|
51 |
+
if "conversation_history" not in st.session_state:
|
52 |
+
st.session_state.conversation_history = []
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# User input area
|
57 |
+
query = st.text_area("📝 اكتب سؤالك أو كمل مذاكرتك هنا:")
|
58 |
+
|
59 |
+
uploaded_files = st.file_uploader("📄 ارفع ملفات PDF للمحاضرات", type=["pdf"], accept_multiple_files=True)
|
60 |
|
61 |
+
if st.button("Ask NINU") and query:
|
62 |
+
# 1. Parse PDF
|
63 |
+
user_docs = parse_pdfs(uploaded_files) if uploaded_files else []
|
64 |
+
bm25_retriever = build_retriever(user_docs)
|
65 |
|
66 |
+
# 2. Create Tool
|
67 |
+
NINU_tool = Tool(
|
68 |
+
name="NINU_Lec_retriever",
|
69 |
+
func=lambda q: extract_text(q, bm25_retriever),
|
70 |
+
description="Retrieves content from uploaded PDFs based on a query."
|
71 |
+
)
|
72 |
+
|
73 |
+
# 3. Create LLM with tools
|
74 |
+
llm = ChatGroq(model="deepseek-r1-distill-llama-70b", groq_api_key=groq_api_key)
|
75 |
+
tools = [NINU_tool]
|
76 |
+
llm_with_tools = llm.bind_tools(tools)
|
77 |
+
|
78 |
+
class AgentState(TypedDict):
|
79 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
80 |
+
|
81 |
+
def assistant(state: AgentState):
|
82 |
+
return {
|
83 |
+
"messages": [llm_with_tools.invoke(state["messages"])]
|
84 |
+
}
|
85 |
+
|
86 |
+
# 4. Build Agent Graph
|
87 |
+
builder = StateGraph(AgentState)
|
88 |
+
builder.add_node("assistant", assistant)
|
89 |
+
builder.add_node("tools", ToolNode(tools))
|
90 |
+
builder.add_edge(START, "assistant")
|
91 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
92 |
+
builder.add_edge("tools", "assistant")
|
93 |
+
NINU = builder.compile()
|
94 |
+
|
95 |
+
# 5. Prepare full conversation messages
|
96 |
+
if len(st.session_state.conversation_history) == 0:
|
97 |
+
# Add the custom prompt first
|
98 |
+
intro_prompt = """
|
99 |
+
I uploaded a lecture PDF. I want you to study it with me step by step.
|
100 |
+
|
101 |
+
- Summarize the lecture part by part.
|
102 |
+
- Explain each part in very simple English like you're teaching a friend.
|
103 |
+
- After each part, ask me 2-3 MCQ questions in English.
|
104 |
+
- Wait for my answer before moving to the next part.
|
105 |
+
- If I answer incorrectly, explain why.
|
106 |
+
|
107 |
+
Let's begin! 💪
|
108 |
"""
|
109 |
+
st.session_state.conversation_history.append(HumanMessage(content=intro_prompt))
|
110 |
+
|
111 |
+
# Add the new user message
|
112 |
+
st.session_state.conversation_history.append(HumanMessage(content=query))
|
113 |
+
|
114 |
+
# 6. Invoke agent with full conversation
|
115 |
+
response = NINU.invoke({"messages": st.session_state.conversation_history})
|
116 |
+
|
117 |
+
# 7. Add assistant response to history
|
118 |
+
assistant_reply = response["messages"][-1]
|
119 |
+
st.session_state.conversation_history.append(assistant_reply)
|
120 |
+
|
121 |
+
# 8. Show output
|
122 |
+
st.markdown("### NINU's Response:")
|
123 |
+
st.write(assistant_reply.content)
|
124 |
|
125 |
+
# 9. Show full conversation history (optional)
|
126 |
+
with st.expander("🧾 Show full conversation history"):
|
127 |
+
for msg in st.session_state.conversation_history:
|
128 |
+
role = " You" if msg.type == "human" else " NINU"
|
129 |
+
st.markdown(f"**{role}:** {msg.content}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|