import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # 模型名称 model_name = "baidu/ERNIE-4.5-0.3B-PT" # 加载 tokenizer 和模型(首次运行可能较慢) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.float32, device_map="auto" ) embedding_layer = model.get_input_embeddings() # 提取句子的平均 embedding def get_sentence_embedding(text): inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True) input_ids = inputs["input_ids"] with torch.no_grad(): embeddings = embedding_layer(input_ids) # shape: [1, seq_len, hidden_size] sentence_embedding = embeddings.mean(dim=1) # shape: [1, hidden_size] return sentence_embedding # Gradio 回调函数 def calculate_similarity(sentence1, sentence2): emb1 = get_sentence_embedding(sentence1) emb2 = get_sentence_embedding(sentence2) similarity = F.cosine_similarity(emb1, emb2).item() return f"Similarity: {similarity:.4f}" # Gradio 界面 title = "Calculate two sentences's similarity by ERNIE 4.5-0.3B's embedding layer" demo = gr.Interface( fn=calculate_similarity, inputs=[ gr.Textbox(label="Sentence 1", placeholder="我爱北京"), gr.Textbox(label="Sentence 2", placeholder="我爱上海") ], outputs=gr.Textbox(label="Similarity"), title=title, description="This app uses the embedding layer of Baidu ERNIE-4.5-0.3B-PT model to compute the cosine similarity between two sentences.", ) # 启动 Gradio app if __name__ == "__main__": demo.launch()