Update app.py
Browse files
app.py
CHANGED
|
@@ -2,11 +2,13 @@ import torch
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
model_name = "baidu/ERNIE-4.5-0.3B-PT"
|
| 7 |
-
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 9 |
-
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
model_name,
|
|
@@ -16,6 +18,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 16 |
|
| 17 |
embedding_layer = model.get_input_embeddings()
|
| 18 |
|
|
|
|
| 19 |
def get_sentence_embedding(text):
|
| 20 |
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True).to(device)
|
| 21 |
with torch.no_grad():
|
|
@@ -23,21 +26,64 @@ def get_sentence_embedding(text):
|
|
| 23 |
sentence_embedding = embeddings.mean(dim=1)
|
| 24 |
return sentence_embedding
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
emb1 = get_sentence_embedding(sentence1)
|
| 28 |
emb2 = get_sentence_embedding(sentence2)
|
| 29 |
similarity = F.cosine_similarity(emb1, emb2).item()
|
| 30 |
-
return f"Similarity: {similarity:.4f}"
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
demo = gr.Interface(
|
| 33 |
-
fn=
|
| 34 |
inputs=[
|
| 35 |
-
gr.Textbox(label="Sentence 1", placeholder="
|
| 36 |
-
gr.Textbox(label="Sentence 2", placeholder="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
],
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
description="This app uses the embedding layer of Baidu ERNIE-4.5-0.3B-PT model to compute the cosine similarity between two sentences.",
|
| 41 |
)
|
| 42 |
|
| 43 |
if __name__ == "__main__":
|
|
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from sklearn.decomposition import PCA
|
| 8 |
|
| 9 |
+
# Load model and tokenizer
|
| 10 |
model_name = "baidu/ERNIE-4.5-0.3B-PT"
|
|
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
model_name,
|
|
|
|
| 18 |
|
| 19 |
embedding_layer = model.get_input_embeddings()
|
| 20 |
|
| 21 |
+
# Get sentence embedding by averaging token embeddings
|
| 22 |
def get_sentence_embedding(text):
|
| 23 |
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True).to(device)
|
| 24 |
with torch.no_grad():
|
|
|
|
| 26 |
sentence_embedding = embeddings.mean(dim=1)
|
| 27 |
return sentence_embedding
|
| 28 |
|
| 29 |
+
# Show token list and token IDs
|
| 30 |
+
def tokenize_sentence(sentence):
|
| 31 |
+
tokens = tokenizer.tokenize(sentence)
|
| 32 |
+
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
| 33 |
+
return list(zip(tokens, token_ids))
|
| 34 |
+
|
| 35 |
+
# PCA plot of two sentence embeddings
|
| 36 |
+
def plot_embeddings(sentence1, sentence2):
|
| 37 |
+
emb1 = get_sentence_embedding(sentence1).cpu().numpy()
|
| 38 |
+
emb2 = get_sentence_embedding(sentence2).cpu().numpy()
|
| 39 |
+
embeddings = np.vstack([emb1, emb2]) # Shape: (2, hidden_size)
|
| 40 |
+
|
| 41 |
+
# PCA to reduce to 2D
|
| 42 |
+
pca = PCA(n_components=2)
|
| 43 |
+
reduced = pca.fit_transform(embeddings)
|
| 44 |
+
|
| 45 |
+
# Plot
|
| 46 |
+
fig, ax = plt.subplots()
|
| 47 |
+
ax.scatter(reduced[:, 0], reduced[:, 1], color=["red", "blue"])
|
| 48 |
+
ax.annotate("Sentence 1", (reduced[0, 0], reduced[0, 1]), color="red")
|
| 49 |
+
ax.annotate("Sentence 2", (reduced[1, 0], reduced[1, 1]), color="blue")
|
| 50 |
+
ax.set_title("2D PCA of Sentence Embeddings")
|
| 51 |
+
ax.set_xlabel("PCA 1")
|
| 52 |
+
ax.set_ylabel("PCA 2")
|
| 53 |
+
ax.grid(True)
|
| 54 |
+
return fig
|
| 55 |
+
|
| 56 |
+
# Main function to run all outputs
|
| 57 |
+
def analyze_sentences(sentence1, sentence2):
|
| 58 |
+
# Cosine similarity
|
| 59 |
emb1 = get_sentence_embedding(sentence1)
|
| 60 |
emb2 = get_sentence_embedding(sentence2)
|
| 61 |
similarity = F.cosine_similarity(emb1, emb2).item()
|
|
|
|
| 62 |
|
| 63 |
+
# Token info
|
| 64 |
+
tokens1 = tokenize_sentence(sentence1)
|
| 65 |
+
tokens2 = tokenize_sentence(sentence2)
|
| 66 |
+
|
| 67 |
+
# Plot
|
| 68 |
+
fig = plot_embeddings(sentence1, sentence2)
|
| 69 |
+
|
| 70 |
+
return f"Similarity: {similarity:.4f}", tokens1, tokens2, fig
|
| 71 |
+
|
| 72 |
+
# Build Gradio interface
|
| 73 |
demo = gr.Interface(
|
| 74 |
+
fn=analyze_sentences,
|
| 75 |
inputs=[
|
| 76 |
+
gr.Textbox(label="Sentence 1", placeholder="I love cat."),
|
| 77 |
+
gr.Textbox(label="Sentence 2", placeholder="I love dog."),
|
| 78 |
+
],
|
| 79 |
+
outputs=[
|
| 80 |
+
gr.Textbox(label="Cosine Similarity Score"),
|
| 81 |
+
gr.Dataframe(headers=["Token", "Token ID"], label="Sentence 1 Tokens"),
|
| 82 |
+
gr.Dataframe(headers=["Token", "Token ID"], label="Sentence 2 Tokens"),
|
| 83 |
+
gr.Plot(label="2D PCA Plot of Embeddings"),
|
| 84 |
],
|
| 85 |
+
title="ERNIE 4.5 Embedding Visualization",
|
| 86 |
+
description="Compare two sentences using ERNIE 4.5-0.3B's embedding layer. Outputs cosine similarity, token info, and PCA plot.",
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|