AlexTransformer commited on
Commit
502e188
·
verified ·
1 Parent(s): c48013e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -16
app.py CHANGED
@@ -3,49 +3,44 @@ import torch.nn.functional as F
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import gradio as gr
5
 
6
- # 模型名称
7
  model_name = "baidu/ERNIE-4.5-0.3B-PT"
8
 
9
- # 加载 tokenizer 和模型(首次运行可能较慢)
10
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 
 
11
  model = AutoModelForCausalLM.from_pretrained(
12
  model_name,
13
  trust_remote_code=True,
14
- device_map="auto",
15
  torch_dtype=torch.bfloat16
16
- )
 
17
  embedding_layer = model.get_input_embeddings()
18
 
19
- # 提取句子的平均 embedding
20
  def get_sentence_embedding(text):
21
- inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True)
22
- input_ids = inputs["input_ids"]
23
  with torch.no_grad():
24
- embeddings = embedding_layer(input_ids) # shape: [1, seq_len, hidden_size]
25
- sentence_embedding = embeddings.mean(dim=1) # shape: [1, hidden_size]
26
  return sentence_embedding
27
 
28
- # Gradio 回调函数
29
  def calculate_similarity(sentence1, sentence2):
30
  emb1 = get_sentence_embedding(sentence1)
31
  emb2 = get_sentence_embedding(sentence2)
32
  similarity = F.cosine_similarity(emb1, emb2).item()
33
  return f"Similarity: {similarity:.4f}"
34
 
35
- # Gradio 界面
36
- title = "Calculate two sentences's similarity by ERNIE 4.5-0.3B's embedding layer"
37
  demo = gr.Interface(
38
  fn=calculate_similarity,
39
  inputs=[
40
  gr.Textbox(label="Sentence 1", placeholder="我爱北京"),
41
- gr.Textbox(label="Sentence 2", placeholder="我爱上海")
42
  ],
43
  outputs=gr.Textbox(label="Similarity"),
44
- title=title,
45
  description="This app uses the embedding layer of Baidu ERNIE-4.5-0.3B-PT model to compute the cosine similarity between two sentences.",
46
  )
47
 
48
- # 启动 Gradio app
49
  if __name__ == "__main__":
50
- demo.launch()
 
51
 
 
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import gradio as gr
5
 
 
6
  model_name = "baidu/ERNIE-4.5-0.3B-PT"
7
 
 
8
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
9
+
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
  model = AutoModelForCausalLM.from_pretrained(
12
  model_name,
13
  trust_remote_code=True,
 
14
  torch_dtype=torch.bfloat16
15
+ ).to(device)
16
+
17
  embedding_layer = model.get_input_embeddings()
18
 
 
19
  def get_sentence_embedding(text):
20
+ inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True).to(device)
 
21
  with torch.no_grad():
22
+ embeddings = embedding_layer(inputs["input_ids"])
23
+ sentence_embedding = embeddings.mean(dim=1)
24
  return sentence_embedding
25
 
 
26
  def calculate_similarity(sentence1, sentence2):
27
  emb1 = get_sentence_embedding(sentence1)
28
  emb2 = get_sentence_embedding(sentence2)
29
  similarity = F.cosine_similarity(emb1, emb2).item()
30
  return f"Similarity: {similarity:.4f}"
31
 
 
 
32
  demo = gr.Interface(
33
  fn=calculate_similarity,
34
  inputs=[
35
  gr.Textbox(label="Sentence 1", placeholder="我爱北京"),
36
+ gr.Textbox(label="Sentence 2", placeholder="我爱上海"),
37
  ],
38
  outputs=gr.Textbox(label="Similarity"),
39
+ title="Calculate two sentences's similarity by ERNIE 4.5-0.3B's embedding layer",
40
  description="This app uses the embedding layer of Baidu ERNIE-4.5-0.3B-PT model to compute the cosine similarity between two sentences.",
41
  )
42
 
 
43
  if __name__ == "__main__":
44
+ demo.launch(share=True)
45
+
46