Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,51 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# 模型名称
|
7 |
+
model_name = "baidu/ERNIE-4.5-0.3B-PT"
|
|
|
|
|
8 |
|
9 |
+
# 加载 tokenizer 和模型(首次运行可能较慢)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_name,
|
13 |
+
trust_remote_code=True,
|
14 |
+
torch_dtype=torch.float32,
|
15 |
+
device_map="auto"
|
16 |
+
)
|
17 |
+
embedding_layer = model.get_input_embeddings()
|
18 |
+
|
19 |
+
# 提取句子的平均 embedding
|
20 |
+
def get_sentence_embedding(text):
|
21 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True)
|
22 |
+
input_ids = inputs["input_ids"]
|
23 |
+
with torch.no_grad():
|
24 |
+
embeddings = embedding_layer(input_ids) # shape: [1, seq_len, hidden_size]
|
25 |
+
sentence_embedding = embeddings.mean(dim=1) # shape: [1, hidden_size]
|
26 |
+
return sentence_embedding
|
27 |
+
|
28 |
+
# Gradio 回调函数
|
29 |
+
def calculate_similarity(sentence1, sentence2):
|
30 |
+
emb1 = get_sentence_embedding(sentence1)
|
31 |
+
emb2 = get_sentence_embedding(sentence2)
|
32 |
+
similarity = F.cosine_similarity(emb1, emb2).item()
|
33 |
+
return f"Similarity: {similarity:.4f}"
|
34 |
+
|
35 |
+
# Gradio 界面
|
36 |
+
title = "Calculate two sentences's similarity by ERNIE 4.5-0.3B's embedding layer"
|
37 |
+
demo = gr.Interface(
|
38 |
+
fn=calculate_similarity,
|
39 |
+
inputs=[
|
40 |
+
gr.Textbox(label="Sentence 1", placeholder="我爱北京"),
|
41 |
+
gr.Textbox(label="Sentence 2", placeholder="我爱上海")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
],
|
43 |
+
outputs=gr.Textbox(label="Similarity"),
|
44 |
+
title=title,
|
45 |
+
description="This app uses the embedding layer of Baidu ERNIE-4.5-0.3B-PT model to compute the cosine similarity between two sentences.",
|
46 |
)
|
47 |
|
48 |
+
# 启动 Gradio app
|
49 |
if __name__ == "__main__":
|
50 |
demo.launch()
|
51 |
+
|