AlexTransformer commited on
Commit
4d42cbc
·
verified ·
1 Parent(s): 25ee21e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -56
app.py CHANGED
@@ -1,64 +1,51 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import gradio as gr
 
5
 
6
+ # 模型名称
7
+ model_name = "baidu/ERNIE-4.5-0.3B-PT"
 
 
8
 
9
+ # 加载 tokenizer 和模型(首次运行可能较慢)
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ model_name,
13
+ trust_remote_code=True,
14
+ torch_dtype=torch.float32,
15
+ device_map="auto"
16
+ )
17
+ embedding_layer = model.get_input_embeddings()
18
+
19
+ # 提取句子的平均 embedding
20
+ def get_sentence_embedding(text):
21
+ inputs = tokenizer(text, return_tensors="pt", add_special_tokens=True)
22
+ input_ids = inputs["input_ids"]
23
+ with torch.no_grad():
24
+ embeddings = embedding_layer(input_ids) # shape: [1, seq_len, hidden_size]
25
+ sentence_embedding = embeddings.mean(dim=1) # shape: [1, hidden_size]
26
+ return sentence_embedding
27
+
28
+ # Gradio 回调函数
29
+ def calculate_similarity(sentence1, sentence2):
30
+ emb1 = get_sentence_embedding(sentence1)
31
+ emb2 = get_sentence_embedding(sentence2)
32
+ similarity = F.cosine_similarity(emb1, emb2).item()
33
+ return f"Similarity: {similarity:.4f}"
34
+
35
+ # Gradio 界面
36
+ title = "Calculate two sentences's similarity by ERNIE 4.5-0.3B's embedding layer"
37
+ demo = gr.Interface(
38
+ fn=calculate_similarity,
39
+ inputs=[
40
+ gr.Textbox(label="Sentence 1", placeholder="我爱北京"),
41
+ gr.Textbox(label="Sentence 2", placeholder="我爱上海")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ],
43
+ outputs=gr.Textbox(label="Similarity"),
44
+ title=title,
45
+ description="This app uses the embedding layer of Baidu ERNIE-4.5-0.3B-PT model to compute the cosine similarity between two sentences.",
46
  )
47
 
48
+ # 启动 Gradio app
49
  if __name__ == "__main__":
50
  demo.launch()
51
+