import gradio as gr from optimum.intel.openvino import OVStableDiffusionPipeline from diffusers.training_utils import set_seed quantized_pipe = OVStableDiffusionPipeline.from_pretrained("OpenVINO/Stable-Diffusion-Pokemon-en-quantized", compile=False) quantized_pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) quantized_pipe.compile() prompt = "cartoon bird" def generate(image): output = quantized_pipe(prompt, num_inference_steps=50, output_type="pil") return output.images[0] examples = ["cartoon bird", "a drawing of a green pokemon with red eyes", "plant pokemon in jungle"] gr.Interface( fn=generate, inputs=gr.inputs.Textbox(placeholder="cartoon bird", label="Prompt", lines=1), outputs=gr.outputs.Image(type="pil", label="Generated Image"), title="OpenVINO-optimized Stable Diffusion", description="This is the Optimum-based demo for optimized Stable Diffusion pipeline trained on Pokemon dataset and running with OpenVINO", theme="huggingface", ).launch()