Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,22 +14,22 @@ import numpy as np
|
|
14 |
torch.manual_seed(1234)
|
15 |
MAX_WAV_VALUE = 32768.0
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
def synthesize(text):
|
35 |
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
@@ -43,13 +43,11 @@ def synthesize(text):
|
|
43 |
# mel2wav inference:
|
44 |
with torch.no_grad():
|
45 |
audio = vocoder_model.inference(mel_outputs_postnet)
|
46 |
-
|
47 |
audio_numpy = audio.data.cpu().detach().numpy()
|
48 |
|
49 |
return (22050, audio_numpy)
|
50 |
|
51 |
|
52 |
-
init_models(hparams)
|
53 |
iface = gr.Interface(fn=synthesize, inputs="text", outputs=[gr.Audio(label="Generated Speech", type="numpy"),])
|
54 |
iface.launch()
|
55 |
|
|
|
14 |
torch.manual_seed(1234)
|
15 |
MAX_WAV_VALUE = 32768.0
|
16 |
|
17 |
+
# load trained tacotron2 + GST model:
|
18 |
+
model = load_model(hparams)
|
19 |
+
checkpoint_path = "trained_models/checkpoint_78000.model"
|
20 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")['state_dict'])
|
21 |
+
# model.to('cuda')
|
22 |
+
_ = model.eval()
|
23 |
+
|
24 |
+
# load pre trained MelGAN model for mel2audio:
|
25 |
+
vocoder_checkpoint_path = "trained_models/nvidia_tacotron2_LJ11_epoch6400.pt"
|
26 |
+
checkpoint = torch.load(vocoder_checkpoint_path, map_location="cpu")
|
27 |
+
hp_melgan = load_hparam("melgan/config/default.yaml")
|
28 |
+
vocoder_model = Generator(80)
|
29 |
+
vocoder_model.load_state_dict(checkpoint['model_g'])
|
30 |
+
# vocoder_model = vocoder_model.to('cuda')
|
31 |
+
vocoder_model.eval(inference=False)
|
32 |
+
|
33 |
|
34 |
def synthesize(text):
|
35 |
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
|
|
43 |
# mel2wav inference:
|
44 |
with torch.no_grad():
|
45 |
audio = vocoder_model.inference(mel_outputs_postnet)
|
|
|
46 |
audio_numpy = audio.data.cpu().detach().numpy()
|
47 |
|
48 |
return (22050, audio_numpy)
|
49 |
|
50 |
|
|
|
51 |
iface = gr.Interface(fn=synthesize, inputs="text", outputs=[gr.Audio(label="Generated Speech", type="numpy"),])
|
52 |
iface.launch()
|
53 |
|