Spaces:
Sleeping
Sleeping
Delete stft.py
Browse files
stft.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
BSD 3-Clause License
|
3 |
-
|
4 |
-
Copyright (c) 2017, Prem Seetharaman
|
5 |
-
All rights reserved.
|
6 |
-
|
7 |
-
* Redistribution and use in source and binary forms, with or without
|
8 |
-
modification, are permitted provided that the following conditions are met:
|
9 |
-
|
10 |
-
* Redistributions of source code must retain the above copyright notice,
|
11 |
-
this list of conditions and the following disclaimer.
|
12 |
-
|
13 |
-
* Redistributions in binary form must reproduce the above copyright notice, this
|
14 |
-
list of conditions and the following disclaimer in the
|
15 |
-
documentation and/or other materials provided with the distribution.
|
16 |
-
|
17 |
-
* Neither the name of the copyright holder nor the names of its
|
18 |
-
contributors may be used to endorse or promote products derived from this
|
19 |
-
software without specific prior written permission.
|
20 |
-
|
21 |
-
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
22 |
-
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
23 |
-
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
24 |
-
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
25 |
-
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
26 |
-
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
27 |
-
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
28 |
-
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29 |
-
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
30 |
-
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31 |
-
"""
|
32 |
-
|
33 |
-
import torch
|
34 |
-
import numpy as np
|
35 |
-
import torch.nn.functional as F
|
36 |
-
from torch.autograd import Variable
|
37 |
-
from scipy.signal import get_window
|
38 |
-
from librosa.util import pad_center, tiny
|
39 |
-
from audio_processing import window_sumsquare
|
40 |
-
|
41 |
-
|
42 |
-
class STFT(torch.nn.Module):
|
43 |
-
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
44 |
-
def __init__(self, filter_length=800, hop_length=200, win_length=800,
|
45 |
-
window='hann'):
|
46 |
-
super(STFT, self).__init__()
|
47 |
-
self.filter_length = filter_length
|
48 |
-
self.hop_length = hop_length
|
49 |
-
self.win_length = win_length
|
50 |
-
self.window = window
|
51 |
-
self.forward_transform = None
|
52 |
-
scale = self.filter_length / self.hop_length
|
53 |
-
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
54 |
-
|
55 |
-
cutoff = int((self.filter_length / 2 + 1))
|
56 |
-
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
|
57 |
-
np.imag(fourier_basis[:cutoff, :])])
|
58 |
-
|
59 |
-
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
60 |
-
inverse_basis = torch.FloatTensor(
|
61 |
-
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
62 |
-
|
63 |
-
if window is not None:
|
64 |
-
assert(filter_length >= win_length)
|
65 |
-
# get window and zero center pad it to filter_length
|
66 |
-
fft_window = get_window(window, win_length, fftbins=True)
|
67 |
-
fft_window = pad_center(fft_window, filter_length)
|
68 |
-
fft_window = torch.from_numpy(fft_window).float()
|
69 |
-
|
70 |
-
# window the bases
|
71 |
-
forward_basis *= fft_window
|
72 |
-
inverse_basis *= fft_window
|
73 |
-
|
74 |
-
self.register_buffer('forward_basis', forward_basis.float())
|
75 |
-
self.register_buffer('inverse_basis', inverse_basis.float())
|
76 |
-
|
77 |
-
def transform(self, input_data):
|
78 |
-
num_batches = input_data.size(0)
|
79 |
-
num_samples = input_data.size(1)
|
80 |
-
|
81 |
-
self.num_samples = num_samples
|
82 |
-
|
83 |
-
# similar to librosa, reflect-pad the input
|
84 |
-
input_data = input_data.view(num_batches, 1, num_samples)
|
85 |
-
input_data = F.pad(
|
86 |
-
input_data.unsqueeze(1),
|
87 |
-
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
88 |
-
mode='reflect')
|
89 |
-
input_data = input_data.squeeze(1)
|
90 |
-
|
91 |
-
forward_transform = F.conv1d(
|
92 |
-
input_data,
|
93 |
-
Variable(self.forward_basis, requires_grad=False),
|
94 |
-
stride=self.hop_length,
|
95 |
-
padding=0)
|
96 |
-
|
97 |
-
cutoff = int((self.filter_length / 2) + 1)
|
98 |
-
real_part = forward_transform[:, :cutoff, :]
|
99 |
-
imag_part = forward_transform[:, cutoff:, :]
|
100 |
-
|
101 |
-
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
102 |
-
phase = torch.autograd.Variable(
|
103 |
-
torch.atan2(imag_part.data, real_part.data))
|
104 |
-
|
105 |
-
return magnitude, phase
|
106 |
-
|
107 |
-
def inverse(self, magnitude, phase):
|
108 |
-
recombine_magnitude_phase = torch.cat(
|
109 |
-
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
|
110 |
-
|
111 |
-
inverse_transform = F.conv_transpose1d(
|
112 |
-
recombine_magnitude_phase,
|
113 |
-
Variable(self.inverse_basis, requires_grad=False),
|
114 |
-
stride=self.hop_length,
|
115 |
-
padding=0)
|
116 |
-
|
117 |
-
if self.window is not None:
|
118 |
-
window_sum = window_sumsquare(
|
119 |
-
self.window, magnitude.size(-1), hop_length=self.hop_length,
|
120 |
-
win_length=self.win_length, n_fft=self.filter_length,
|
121 |
-
dtype=np.float32)
|
122 |
-
# remove modulation effects
|
123 |
-
approx_nonzero_indices = torch.from_numpy(
|
124 |
-
np.where(window_sum > tiny(window_sum))[0])
|
125 |
-
window_sum = torch.autograd.Variable(
|
126 |
-
torch.from_numpy(window_sum), requires_grad=False)
|
127 |
-
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
|
128 |
-
|
129 |
-
# scale by hop ratio
|
130 |
-
inverse_transform *= float(self.filter_length) / self.hop_length
|
131 |
-
|
132 |
-
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
|
133 |
-
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
|
134 |
-
|
135 |
-
return inverse_transform
|
136 |
-
|
137 |
-
def forward(self, input_data):
|
138 |
-
self.magnitude, self.phase = self.transform(input_data)
|
139 |
-
reconstruction = self.inverse(self.magnitude, self.phase)
|
140 |
-
return reconstruction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|