Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -37,11 +37,12 @@ vocoder_model.load_state_dict(checkpoint['model_g'])
|
|
37 |
vocoder_model.eval(inference=False)
|
38 |
|
39 |
|
40 |
-
def synthesize(text):
|
41 |
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
42 |
sequence = torch.from_numpy(sequence).to(device='cpu', dtype=torch.int64)
|
43 |
|
44 |
-
gst_head_scores = np.array([0.5, 0.15, 0.35]) # originally ([0.5, 0.15, 0.35])
|
|
|
45 |
gst_scores = torch.from_numpy(gst_head_scores).float()
|
46 |
|
47 |
mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence, gst_scores)
|
@@ -54,6 +55,6 @@ def synthesize(text):
|
|
54 |
return (22050, audio_numpy)
|
55 |
|
56 |
|
57 |
-
iface = gr.Interface(fn=synthesize, inputs="text", outputs=[gr.Audio(label="Generated Speech", type="numpy"),])
|
58 |
iface.launch()
|
59 |
|
|
|
37 |
vocoder_model.eval(inference=False)
|
38 |
|
39 |
|
40 |
+
def synthesize(text, gst_1, gst_2, gst_3):
|
41 |
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
42 |
sequence = torch.from_numpy(sequence).to(device='cpu', dtype=torch.int64)
|
43 |
|
44 |
+
# gst_head_scores = np.array([0.5, 0.15, 0.35]) # originally ([0.5, 0.15, 0.35])
|
45 |
+
gst_head_scores = np.array([gst_1, gst_2, gst_3]) # originally ([0.5, 0.15, 0.35])
|
46 |
gst_scores = torch.from_numpy(gst_head_scores).float()
|
47 |
|
48 |
mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence, gst_scores)
|
|
|
55 |
return (22050, audio_numpy)
|
56 |
|
57 |
|
58 |
+
iface = gr.Interface(fn=synthesize, inputs=["text", gr.Slider(0.25, 0.55), gr.Slider(0.25, 0.55), gr.Slider(0.25, 0.55)], outputs=[gr.Audio(label="Generated Speech", type="numpy"),])
|
59 |
iface.launch()
|
60 |
|