AlexK-PL commited on
Commit
4d697fb
·
1 Parent(s): 9c99c9f

Delete text

Browse files
text/LICENSE DELETED
@@ -1,19 +0,0 @@
1
- Copyright (c) 2017 Keith Ito
2
-
3
- Permission is hereby granted, free of charge, to any person obtaining a copy
4
- of this software and associated documentation files (the "Software"), to deal
5
- in the Software without restriction, including without limitation the rights
6
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
- copies of the Software, and to permit persons to whom the Software is
8
- furnished to do so, subject to the following conditions:
9
-
10
- The above copyright notice and this permission notice shall be included in
11
- all copies or substantial portions of the Software.
12
-
13
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
- THE SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/__init__.py DELETED
@@ -1,76 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
- import re
3
- from text import cleaners
4
- from text.symbols import symbols
5
-
6
-
7
- # Mappings from symbol to numeric ID and vice versa:
8
- _symbol_to_id = {s: i for i, s in enumerate(symbols)}
9
- _id_to_symbol = {i: s for i, s in enumerate(symbols)}
10
-
11
- # Regular expression matching text enclosed in curly braces:
12
- _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
13
-
14
-
15
- def text_to_sequence(text, cleaner_names):
16
- '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
17
-
18
- The text can optionally have ARPAbet sequences enclosed in curly braces embedded
19
- in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
20
-
21
- Args:
22
- text: string to convert to a sequence
23
- cleaner_names: names of the cleaner functions to run the text through
24
-
25
- Returns:
26
- List of integers corresponding to the symbols in the text
27
- '''
28
- sequence = []
29
-
30
- # Check for curly braces and treat their contents as ARPAbet:
31
- while len(text):
32
- m = _curly_re.match(text)
33
- if not m:
34
- sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
35
- break
36
- sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
37
- sequence += _arpabet_to_sequence(m.group(2))
38
- text = m.group(3)
39
-
40
- # Append EOS token
41
- sequence.append(_symbol_to_id['~'])
42
- return sequence
43
-
44
-
45
- def sequence_to_text(sequence):
46
- '''Converts a sequence of IDs back to a string'''
47
- result = ''
48
- for symbol_id in sequence:
49
- if symbol_id in _id_to_symbol:
50
- s = _id_to_symbol[symbol_id]
51
- # Enclose ARPAbet back in curly braces:
52
- if len(s) > 1 and s[0] == '@':
53
- s = '{%s}' % s[1:]
54
- result += s
55
- return result.replace('}{', ' ')
56
-
57
-
58
- def _clean_text(text, cleaner_names):
59
- for name in cleaner_names:
60
- cleaner = getattr(cleaners, name)
61
- if not cleaner:
62
- raise Exception('Unknown cleaner: %s' % name)
63
- text = cleaner(text)
64
- return text
65
-
66
-
67
- def _symbols_to_sequence(symbols):
68
- return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
69
-
70
-
71
- def _arpabet_to_sequence(text):
72
- return _symbols_to_sequence(['@' + s for s in text.split()])
73
-
74
-
75
- def _should_keep_symbol(s):
76
- return s in _symbol_to_id and s is not '_' and s is not '~'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/__init__.pyc DELETED
Binary file (3.28 kB)
 
text/__pycache__/__init__.cpython-35.pyc DELETED
Binary file (2.92 kB)
 
text/__pycache__/__init__.cpython-36.pyc DELETED
Binary file (2.72 kB)
 
text/__pycache__/__init__.cpython-37.pyc DELETED
Binary file (2.72 kB)
 
text/__pycache__/cleaners.cpython-35.pyc DELETED
Binary file (2.57 kB)
 
text/__pycache__/cleaners.cpython-36.pyc DELETED
Binary file (2.48 kB)
 
text/__pycache__/cleaners.cpython-37.pyc DELETED
Binary file (2.18 kB)
 
text/__pycache__/cmudict.cpython-35.pyc DELETED
Binary file (2.73 kB)
 
text/__pycache__/cmudict.cpython-36.pyc DELETED
Binary file (2.49 kB)
 
text/__pycache__/cmudict.cpython-37.pyc DELETED
Binary file (2.49 kB)
 
text/__pycache__/numbers.cpython-35.pyc DELETED
Binary file (2.48 kB)
 
text/__pycache__/numbers.cpython-36.pyc DELETED
Binary file (2.23 kB)
 
text/__pycache__/numbers.cpython-37.pyc DELETED
Binary file (2.23 kB)
 
text/__pycache__/symbols.cpython-35.pyc DELETED
Binary file (571 Bytes)
 
text/__pycache__/symbols.cpython-36.pyc DELETED
Binary file (552 Bytes)
 
text/__pycache__/symbols.cpython-37.pyc DELETED
Binary file (552 Bytes)
 
text/cleaners.py DELETED
@@ -1,90 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
-
3
- '''
4
- Cleaners are transformations that run over the input text at both training and eval time.
5
-
6
- Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
- hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
- 1. "english_cleaners" for English text
9
- 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
- the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
- 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
- the symbols in symbols.py to match your data).
13
- '''
14
-
15
- import re
16
- from unidecode import unidecode
17
- from .numbers import normalize_numbers
18
-
19
-
20
- # Regular expression matching whitespace:
21
- _whitespace_re = re.compile(r'\s+')
22
-
23
- # List of (regular expression, replacement) pairs for abbreviations:
24
- _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
25
- ('mrs', 'misess'),
26
- ('mr', 'mister'),
27
- ('dr', 'doctor'),
28
- ('st', 'saint'),
29
- ('co', 'company'),
30
- ('jr', 'junior'),
31
- ('maj', 'major'),
32
- ('gen', 'general'),
33
- ('drs', 'doctors'),
34
- ('rev', 'reverend'),
35
- ('lt', 'lieutenant'),
36
- ('hon', 'honorable'),
37
- ('sgt', 'sergeant'),
38
- ('capt', 'captain'),
39
- ('esq', 'esquire'),
40
- ('ltd', 'limited'),
41
- ('col', 'colonel'),
42
- ('ft', 'fort'),
43
- ]]
44
-
45
-
46
- def expand_abbreviations(text):
47
- for regex, replacement in _abbreviations:
48
- text = re.sub(regex, replacement, text)
49
- return text
50
-
51
-
52
- def expand_numbers(text):
53
- return normalize_numbers(text)
54
-
55
-
56
- def lowercase(text):
57
- return text.lower()
58
-
59
-
60
- def collapse_whitespace(text):
61
- return re.sub(_whitespace_re, ' ', text)
62
-
63
-
64
- def convert_to_ascii(text):
65
- return unidecode(text)
66
-
67
-
68
- def basic_cleaners(text):
69
- '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
70
- text = lowercase(text)
71
- text = collapse_whitespace(text)
72
- return text
73
-
74
-
75
- def transliteration_cleaners(text):
76
- '''Pipeline for non-English text that transliterates to ASCII.'''
77
- text = convert_to_ascii(text)
78
- text = lowercase(text)
79
- text = collapse_whitespace(text)
80
- return text
81
-
82
-
83
- def english_cleaners(text):
84
- '''Pipeline for English text, including number and abbreviation expansion.'''
85
- text = convert_to_ascii(text)
86
- text = lowercase(text)
87
- text = expand_numbers(text)
88
- text = expand_abbreviations(text)
89
- text = collapse_whitespace(text)
90
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/cleaners.pyc DELETED
Binary file (3.23 kB)
 
text/cmudict.py DELETED
@@ -1,65 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
-
3
- import re
4
-
5
-
6
- valid_symbols = [
7
- 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
8
- 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
9
- 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
10
- 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
11
- 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
12
- 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
13
- 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
14
- ]
15
-
16
- _valid_symbol_set = set(valid_symbols)
17
-
18
-
19
- class CMUDict:
20
- '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
21
- def __init__(self, file_or_path, keep_ambiguous=True):
22
- if isinstance(file_or_path, str):
23
- with open(file_or_path, encoding='latin-1') as f:
24
- entries = _parse_cmudict(f)
25
- else:
26
- entries = _parse_cmudict(file_or_path)
27
- if not keep_ambiguous:
28
- entries = {word: pron for word, pron in entries.items() if len(pron) == 1}
29
- self._entries = entries
30
-
31
-
32
- def __len__(self):
33
- return len(self._entries)
34
-
35
-
36
- def lookup(self, word):
37
- '''Returns list of ARPAbet pronunciations of the given word.'''
38
- return self._entries.get(word.upper())
39
-
40
-
41
-
42
- _alt_re = re.compile(r'\([0-9]+\)')
43
-
44
-
45
- def _parse_cmudict(file):
46
- cmudict = {}
47
- for line in file:
48
- if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
49
- parts = line.split(' ')
50
- word = re.sub(_alt_re, '', parts[0])
51
- pronunciation = _get_pronunciation(parts[1])
52
- if pronunciation:
53
- if word in cmudict:
54
- cmudict[word].append(pronunciation)
55
- else:
56
- cmudict[word] = [pronunciation]
57
- return cmudict
58
-
59
-
60
- def _get_pronunciation(s):
61
- parts = s.strip().split(' ')
62
- for part in parts:
63
- if part not in _valid_symbol_set:
64
- return None
65
- return ' '.join(parts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/numbers.py DELETED
@@ -1,72 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
- # -*- coding: utf-8 -*-
3
-
4
- import inflect
5
- import re
6
-
7
-
8
- _inflect = inflect.engine()
9
- _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
10
- _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
11
- _pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
12
- _dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
13
- _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
14
- _number_re = re.compile(r'[0-9]+')
15
-
16
-
17
- def _remove_commas(m):
18
- return m.group(1).replace(',', '')
19
-
20
-
21
- def _expand_decimal_point(m):
22
- return m.group(1).replace('.', ' point ')
23
-
24
-
25
- def _expand_dollars(m):
26
- match = m.group(1)
27
- parts = match.split('.')
28
- if len(parts) > 2:
29
- return match + ' dollars' # Unexpected format
30
- dollars = int(parts[0]) if parts[0] else 0
31
- cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
32
- if dollars and cents:
33
- dollar_unit = 'dollar' if dollars == 1 else 'dollars'
34
- cent_unit = 'cent' if cents == 1 else 'cents'
35
- return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
36
- elif dollars:
37
- dollar_unit = 'dollar' if dollars == 1 else 'dollars'
38
- return '%s %s' % (dollars, dollar_unit)
39
- elif cents:
40
- cent_unit = 'cent' if cents == 1 else 'cents'
41
- return '%s %s' % (cents, cent_unit)
42
- else:
43
- return 'zero dollars'
44
-
45
-
46
- def _expand_ordinal(m):
47
- return _inflect.number_to_words(m.group(0))
48
-
49
-
50
- def _expand_number(m):
51
- num = int(m.group(0))
52
- if num > 1000 and num < 3000:
53
- if num == 2000:
54
- return 'two thousand'
55
- elif num > 2000 and num < 2010:
56
- return 'two thousand ' + _inflect.number_to_words(num % 100)
57
- elif num % 100 == 0:
58
- return _inflect.number_to_words(num // 100) + ' hundred'
59
- else:
60
- return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
61
- else:
62
- return _inflect.number_to_words(num, andword='')
63
-
64
-
65
- def normalize_numbers(text):
66
- text = re.sub(_comma_number_re, _remove_commas, text)
67
- text = re.sub(_pounds_re, r'\1 pounds', text)
68
- text = re.sub(_dollars_re, _expand_dollars, text)
69
- text = re.sub(_decimal_number_re, _expand_decimal_point, text)
70
- text = re.sub(_ordinal_re, _expand_ordinal, text)
71
- text = re.sub(_number_re, _expand_number, text)
72
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/symbols.py DELETED
@@ -1,17 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
-
3
- '''
4
- Defines the set of symbols used in text input to the model.
5
-
6
- The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. '''
7
- from text import cmudict
8
-
9
- _pad = '_'
10
- _eos = '~'
11
- _characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!\'(),-.:;? '
12
-
13
- # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
14
- _arpabet = ['@' + s for s in cmudict.valid_symbols]
15
-
16
- # Export all symbols:
17
- symbols = [_pad, _eos] + list(_characters) + _arpabet