AlexK-PL commited on
Commit
4996b99
·
1 Parent(s): fa4397c

Delete audio_processing.py

Browse files
Files changed (1) hide show
  1. audio_processing.py +0 -93
audio_processing.py DELETED
@@ -1,93 +0,0 @@
1
- import torch
2
- import numpy as np
3
- from scipy.signal import get_window
4
- import librosa.util as librosa_util
5
-
6
-
7
- def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
8
- n_fft=800, dtype=np.float32, norm=None):
9
- """
10
- # from librosa 0.6
11
- Compute the sum-square envelope of a window function at a given hop length.
12
-
13
- This is used to estimate modulation effects induced by windowing
14
- observations in short-time fourier transforms.
15
-
16
- Parameters
17
- ----------
18
- window : string, tuple, number, callable, or list-like
19
- Window specification, as in `get_window`
20
-
21
- n_frames : int > 0
22
- The number of analysis frames
23
-
24
- hop_length : int > 0
25
- The number of samples to advance between frames
26
-
27
- win_length : [optional]
28
- The length of the window function. By default, this matches `n_fft`.
29
-
30
- n_fft : int > 0
31
- The length of each analysis frame.
32
-
33
- dtype : np.dtype
34
- The data type of the output
35
-
36
- Returns
37
- -------
38
- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
39
- The sum-squared envelope of the window function
40
- """
41
- if win_length is None:
42
- win_length = n_fft
43
-
44
- n = n_fft + hop_length * (n_frames - 1)
45
- x = np.zeros(n, dtype=dtype)
46
-
47
- # Compute the squared window at the desired length
48
- win_sq = get_window(window, win_length, fftbins=True)
49
- win_sq = librosa_util.normalize(win_sq, norm=norm)**2
50
- win_sq = librosa_util.pad_center(win_sq, n_fft)
51
-
52
- # Fill the envelope
53
- for i in range(n_frames):
54
- sample = i * hop_length
55
- x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
56
- return x
57
-
58
-
59
- def griffin_lim(magnitudes, stft_fn, n_iters=30):
60
- """
61
- PARAMS
62
- ------
63
- magnitudes: spectrogram magnitudes
64
- stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
65
- """
66
-
67
- angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
68
- angles = angles.astype(np.float32)
69
- angles = torch.autograd.Variable(torch.from_numpy(angles))
70
- signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
71
-
72
- for i in range(n_iters):
73
- _, angles = stft_fn.transform(signal)
74
- signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
75
- return signal
76
-
77
-
78
- def dynamic_range_compression(x, C=1, clip_val=1e-5):
79
- """
80
- PARAMS
81
- ------
82
- C: compression factor
83
- """
84
- return torch.log(torch.clamp(x, min=clip_val) * C)
85
-
86
-
87
- def dynamic_range_decompression(x, C=1):
88
- """
89
- PARAMS
90
- ------
91
- C: compression factor used to compress
92
- """
93
- return torch.exp(x) / C