Spaces:
Sleeping
Sleeping
Delete logger.py
Browse files
logger.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from tensorboardX import SummaryWriter
|
4 |
-
from plotting_utils import plot_alignment_to_numpy, plot_gst_scores_to_numpy, plot_spectrogram_to_numpy
|
5 |
-
from plotting_utils import plot_gate_outputs_to_numpy
|
6 |
-
|
7 |
-
|
8 |
-
class Tacotron2Logger(SummaryWriter):
|
9 |
-
def __init__(self, logdir):
|
10 |
-
super(Tacotron2Logger, self).__init__(logdir)
|
11 |
-
|
12 |
-
def log_training(self, reduced_loss, grad_norm, learning_rate, duration,
|
13 |
-
iteration):
|
14 |
-
self.add_scalar("training.loss", reduced_loss, iteration)
|
15 |
-
self.add_scalar("grad.norm", grad_norm, iteration)
|
16 |
-
self.add_scalar("learning.rate", learning_rate, iteration)
|
17 |
-
self.add_scalar("duration", duration, iteration)
|
18 |
-
|
19 |
-
def log_validation(self, reduced_loss, model, y, y_pred, gst_scores, iteration):
|
20 |
-
self.add_scalar("validation.loss", reduced_loss, iteration)
|
21 |
-
_, mel_outputs, gate_outputs, alignments, _ = y_pred
|
22 |
-
mel_targets, gate_targets = y
|
23 |
-
|
24 |
-
# plot distribution of parameters
|
25 |
-
for tag, value in model.named_parameters():
|
26 |
-
tag = tag.replace('.', '/')
|
27 |
-
self.add_histogram(tag, value.data.cpu().numpy(), iteration)
|
28 |
-
|
29 |
-
# plot alignment, mel target and predicted, gate target and predicted
|
30 |
-
idx = random.randint(0, alignments.size(0) - 1)
|
31 |
-
|
32 |
-
align_idx = alignments[idx].data.cpu().numpy().T
|
33 |
-
gst_scores = gst_scores.data.cpu().numpy().T
|
34 |
-
# print("Validation GST scores before plotting to tensorboard: {}".format(gst_scores.shape))
|
35 |
-
meltarg_idx = mel_targets[idx].data.cpu().numpy()
|
36 |
-
melout_idx = mel_outputs[idx].data.cpu().numpy()
|
37 |
-
|
38 |
-
self.add_image("alignment", plot_alignment_to_numpy(align_idx), iteration)
|
39 |
-
self.add_image("gst_scores", plot_gst_scores_to_numpy(gst_scores), iteration)
|
40 |
-
self.add_image("mel_target", plot_spectrogram_to_numpy(meltarg_idx), iteration)
|
41 |
-
self.add_image("mel_predicted", plot_spectrogram_to_numpy(melout_idx), iteration)
|
42 |
-
self.add_image(
|
43 |
-
"gate",
|
44 |
-
plot_gate_outputs_to_numpy(
|
45 |
-
gate_targets[idx].data.cpu().numpy(),
|
46 |
-
F.sigmoid(gate_outputs[idx]).data.cpu().numpy()),
|
47 |
-
iteration)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|