Spaces:
Sleeping
Sleeping
Delete utils.py
Browse files
utils.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from scipy.io.wavfile import read
|
3 |
-
import torch
|
4 |
-
|
5 |
-
|
6 |
-
def get_mask_from_lengths(lengths):
|
7 |
-
max_len = torch.max(lengths).item()
|
8 |
-
ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len))
|
9 |
-
mask = (ids < lengths.unsqueeze(1)).byte()
|
10 |
-
# mask = (ids < lengths.unsqueeze(1).cuda()).cpu()
|
11 |
-
# mask = mask.byte()
|
12 |
-
return mask
|
13 |
-
|
14 |
-
|
15 |
-
# probably I won't use it from here
|
16 |
-
def load_wav_to_torch(full_path, sr):
|
17 |
-
sampling_rate, data = read(full_path)
|
18 |
-
assert sr == sampling_rate, "{} SR doesn't match {} on path {}".format(
|
19 |
-
sr, sampling_rate, full_path)
|
20 |
-
return torch.FloatTensor(data.astype(np.float32))
|
21 |
-
|
22 |
-
|
23 |
-
# probably I won't use it from here
|
24 |
-
def load_filepaths_and_text(filename, sort_by_length, split="|"):
|
25 |
-
with open(filename, encoding='utf-8') as f:
|
26 |
-
filepaths_and_text = [line.strip().split(split) for line in f]
|
27 |
-
|
28 |
-
if sort_by_length:
|
29 |
-
filepaths_and_text.sort(key=lambda x: len(x[1]))
|
30 |
-
|
31 |
-
return filepaths_and_text
|
32 |
-
|
33 |
-
|
34 |
-
def to_gpu(x):
|
35 |
-
x = x.contiguous()
|
36 |
-
|
37 |
-
if torch.cuda.is_available():
|
38 |
-
x = x.cuda(non_blocking=True) # I understand this lets asynchronous processing
|
39 |
-
return torch.autograd.Variable(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|