File size: 1,610 Bytes
bfcd0c0
 
cb82d78
 
bfcd0c0
cb82d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfcd0c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr

from hyper_parameters import tacotron_params as hparams
from training import load_model

from text import text_to_sequence

from melgan.model.generator import Generator
from melgan.utils.hparams import load_hparam

torch.manual_seed(1234)
MAX_WAV_VALUE = 32768.0

# load trained tacotron2 + GST model:
model = load_model(hparams)
checkpoint_path = "trained_models/checkpoint_78000.model"
model.load_state_dict(torch.load(checkpoint_path)['state_dict'])
model.to('cuda')
_ = model.eval()

# load pre trained MelGAN model for mel2audio:
vocoder_checkpoint_path = "trained_models/nvidia_tacotron2_LJ11_epoch6400.pt"
checkpoint = torch.load(vocoder_checkpoint_path)
hp_melgan = load_hparam("melgan/config/default.yaml")
vocoder_model = Generator(80)
vocoder_model.load_state_dict(checkpoint['model_g'])
vocoder_model = vocoder_model.to('cuda')
vocoder_model.eval(inference=False)

gst_head_scores = np.array([0.5, 0.15, 0.35])  # originally ([0.5, 0.15, 0.35])
gst_scores = torch.from_numpy(gst_head_scores).cuda().float()

def synthesize(text):
    sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
    sequence = torch.from_numpy(sequence).to(device='cuda', dtype=torch.int64)

    mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence, gst_scores)

    # mel2wav inference:
    with torch.no_grad():
      audio = vocoder_model.inference(mel_outputs_postnet)
    
    audio_numpy = audio.data.cpu().detach().numpy()    
    write(save_path, 22050, audio_numpy)

iface = gr.Interface(fn=synthesize, inputs="text", outputs="audio")
iface.launch()