Spaces:
Sleeping
Sleeping
File size: 1,328 Bytes
c61c48a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from tensorboardX import SummaryWriter
from .plotting import plot_waveform_to_numpy
class MyWriter(SummaryWriter):
def __init__(self, hp, logdir):
super(MyWriter, self).__init__(logdir)
self.sample_rate = hp.audio.sampling_rate
self.is_first = True
def log_training(self, g_loss, d_loss, step):
self.add_scalar('train.g_loss', g_loss, step)
self.add_scalar('train.d_loss', d_loss, step)
def log_validation(self, g_loss, d_loss, generator, discriminator, target, prediction, step):
self.add_scalar('validation.g_loss', g_loss, step)
self.add_scalar('validation.d_loss', d_loss, step)
self.add_audio('raw_audio_predicted', prediction, step, self.sample_rate)
self.add_image('waveform_predicted', plot_waveform_to_numpy(prediction), step)
self.log_histogram(generator, step)
self.log_histogram(discriminator, step)
if self.is_first:
self.add_audio('raw_audio_target', target, step, self.sample_rate)
self.add_image('waveform_target', plot_waveform_to_numpy(target), step)
self.is_first = False
def log_histogram(self, model, step):
for tag, value in model.named_parameters():
self.add_histogram(tag.replace('.', '/'), value.cpu().detach().numpy(), step)
|