Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
from diffusers import DDPMPipeline
|
2 |
-
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
|
3 |
-
image_pipe.to("cuda")
|
4 |
-
images = image_pipe().images
|
5 |
-
image_pipe
|
6 |
-
from diffusers import UNet2DModel
|
7 |
-
|
8 |
-
repo_id = "google/ddpm-church-256"
|
9 |
-
model = UNet2DModel.from_pretrained(repo_id)
|
10 |
-
model
|
11 |
-
model.config
|
12 |
-
model_random = UNet2DModel(**model.config)
|
13 |
-
model_random.save_pretrained("my_model")
|
14 |
-
model_random = UNet2DModel.from_pretrained("my_model")
|
15 |
-
import torch
|
16 |
-
|
17 |
-
torch.manual_seed(0)
|
18 |
-
|
19 |
-
noisy_sample = torch.randn(
|
20 |
-
1, model.config.in_channels, model.config.sample_size, model.config.sample_size
|
21 |
-
)
|
22 |
-
noisy_sample.shape
|
23 |
-
with torch.no_grad():
|
24 |
-
noisy_residual = model(sample=noisy_sample, timestep=2).sample
|
25 |
-
noisy_residual.shape
|
26 |
-
from diffusers import DDPMScheduler
|
27 |
-
|
28 |
-
scheduler = DDPMScheduler.from_config(repo_id)
|
29 |
-
scheduler.config
|
30 |
-
scheduler.save_config("my_scheduler")
|
31 |
-
new_scheduler = DDPMScheduler.from_config("my_scheduler")
|
32 |
-
less_noisy_sample = scheduler.step(
|
33 |
-
model_output=noisy_residual, timestep=2, sample=noisy_sample
|
34 |
-
).prev_sample
|
35 |
-
less_noisy_sample.shape
|
36 |
-
import PIL.Image
|
37 |
-
import numpy as np
|
38 |
-
|
39 |
-
def display_sample(sample, i):
|
40 |
-
image_processed = sample.cpu().permute(0, 2, 3, 1)
|
41 |
-
image_processed = (image_processed + 1.0) * 127.5
|
42 |
-
image_processed = image_processed.numpy().astype(np.uint8)
|
43 |
-
|
44 |
-
image_pil = PIL.Image.fromarray(image_processed[0])
|
45 |
-
display(f"Image at step {i}")
|
46 |
-
display(image_pil)
|
47 |
-
model.to("cuda")
|
48 |
-
noisy_sample = noisy_sample.to("cuda")
|
49 |
-
import tqdm
|
50 |
-
|
51 |
-
sample = noisy_sample
|
52 |
-
|
53 |
-
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
54 |
-
# 1. predict noise residual
|
55 |
-
with torch.no_grad():
|
56 |
-
residual = model(sample, t).sample
|
57 |
-
|
58 |
-
# 2. compute less noisy image and set x_t -> x_t-1
|
59 |
-
sample = scheduler.step(residual, t, sample).prev_sample
|
60 |
-
|
61 |
-
# 3. optionally look at image
|
62 |
-
if (i + 1) % 50 == 0:
|
63 |
-
display_sample(sample, i + 1)
|
64 |
-
from diffusers import DDIMScheduler
|
65 |
-
|
66 |
-
scheduler = DDIMScheduler.from_config(repo_id)
|
67 |
-
scheduler.set_timesteps(num_inference_steps=50)
|
68 |
-
import tqdm
|
69 |
-
|
70 |
-
sample = noisy_sample
|
71 |
-
|
72 |
-
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
73 |
-
# 1. predict noise residual
|
74 |
-
with torch.no_grad():
|
75 |
-
residual = model(sample, t).sample
|
76 |
-
|
77 |
-
# 2. compute previous image and set x_t -> x_t-1
|
78 |
-
sample = scheduler.step(residual, t, sample).prev_sample
|
79 |
-
|
80 |
-
# 3. optionally look at image
|
81 |
-
if (i + 1) % 10 == 0:
|
82 |
-
display_sample(sample, i + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|