Spaces:
Runtime error
Runtime error
from torch import nn | |
import torch.nn.functional as F | |
import torch | |
class TPS: | |
''' | |
TPS transformation, mode 'kp' for Eq(2) in the paper, mode 'random' for equivariance loss. | |
''' | |
def __init__(self, mode, bs, **kwargs): | |
self.bs = bs | |
self.mode = mode | |
if mode == 'random': | |
noise = torch.normal(mean=0, std=kwargs['sigma_affine'] * torch.ones([bs, 2, 3])) | |
self.theta = noise + torch.eye(2, 3).view(1, 2, 3) | |
self.control_points = make_coordinate_grid((kwargs['points_tps'], kwargs['points_tps']), type=noise.type()) | |
self.control_points = self.control_points.unsqueeze(0) | |
self.control_params = torch.normal(mean=0, | |
std=kwargs['sigma_tps'] * torch.ones([bs, 1, kwargs['points_tps'] ** 2])) | |
elif mode == 'kp': | |
kp_1 = kwargs["kp_1"] | |
kp_2 = kwargs["kp_2"] | |
device = kp_1.device | |
kp_type = kp_1.type() | |
self.gs = kp_1.shape[1] | |
n = kp_1.shape[2] | |
K = torch.norm(kp_1[:,:,:, None]-kp_1[:,:, None, :], dim=4, p=2) | |
K = K**2 | |
K = K * torch.log(K+1e-9) | |
one1 = torch.ones(self.bs, kp_1.shape[1], kp_1.shape[2], 1).to(device).type(kp_type) | |
kp_1p = torch.cat([kp_1,one1], 3) | |
zero = torch.zeros(self.bs, kp_1.shape[1], 3, 3).to(device).type(kp_type) | |
P = torch.cat([kp_1p, zero],2) | |
L = torch.cat([K,kp_1p.permute(0,1,3,2)],2) | |
L = torch.cat([L,P],3) | |
zero = torch.zeros(self.bs, kp_1.shape[1], 3, 2).to(device).type(kp_type) | |
Y = torch.cat([kp_2, zero], 2) | |
one = torch.eye(L.shape[2]).expand(L.shape).to(device).type(kp_type)*0.01 | |
L = L + one | |
param = torch.matmul(torch.inverse(L),Y) | |
self.theta = param[:,:,n:,:].permute(0,1,3,2) | |
self.control_points = kp_1 | |
self.control_params = param[:,:,:n,:] | |
else: | |
raise Exception("Error TPS mode") | |
def transform_frame(self, frame): | |
grid = make_coordinate_grid(frame.shape[2:], type=frame.type()).unsqueeze(0).to(frame.device) | |
grid = grid.view(1, frame.shape[2] * frame.shape[3], 2) | |
shape = [self.bs, frame.shape[2], frame.shape[3], 2] | |
if self.mode == 'kp': | |
shape.insert(1, self.gs) | |
grid = self.warp_coordinates(grid).view(*shape) | |
return grid | |
def warp_coordinates(self, coordinates): | |
theta = self.theta.type(coordinates.type()).to(coordinates.device) | |
control_points = self.control_points.type(coordinates.type()).to(coordinates.device) | |
control_params = self.control_params.type(coordinates.type()).to(coordinates.device) | |
if self.mode == 'kp': | |
transformed = torch.matmul(theta[:, :, :, :2], coordinates.permute(0, 2, 1)) + theta[:, :, :, 2:] | |
distances = coordinates.view(coordinates.shape[0], 1, 1, -1, 2) - control_points.view(self.bs, control_points.shape[1], -1, 1, 2) | |
distances = distances ** 2 | |
result = distances.sum(-1) | |
result = result * torch.log(result + 1e-9) | |
result = torch.matmul(result.permute(0, 1, 3, 2), control_params) | |
transformed = transformed.permute(0, 1, 3, 2) + result | |
elif self.mode == 'random': | |
theta = theta.unsqueeze(1) | |
transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:] | |
transformed = transformed.squeeze(-1) | |
ances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2) | |
distances = ances ** 2 | |
result = distances.sum(-1) | |
result = result * torch.log(result + 1e-9) | |
result = result * control_params | |
result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1) | |
transformed = transformed + result | |
else: | |
raise Exception("Error TPS mode") | |
return transformed | |
def kp2gaussian(kp, spatial_size, kp_variance): | |
""" | |
Transform a keypoint into gaussian like representation | |
""" | |
coordinate_grid = make_coordinate_grid(spatial_size, kp.type()).to(kp.device) | |
number_of_leading_dimensions = len(kp.shape) - 1 | |
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape | |
coordinate_grid = coordinate_grid.view(*shape) | |
repeats = kp.shape[:number_of_leading_dimensions] + (1, 1, 1) | |
coordinate_grid = coordinate_grid.repeat(*repeats) | |
# Preprocess kp shape | |
shape = kp.shape[:number_of_leading_dimensions] + (1, 1, 2) | |
kp = kp.view(*shape) | |
mean_sub = (coordinate_grid - kp) | |
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) | |
return out | |
def make_coordinate_grid(spatial_size, type): | |
""" | |
Create a meshgrid [-1,1] x [-1,1] of given spatial_size. | |
""" | |
h, w = spatial_size | |
x = torch.arange(w).type(type) | |
y = torch.arange(h).type(type) | |
x = (2 * (x / (w - 1)) - 1) | |
y = (2 * (y / (h - 1)) - 1) | |
yy = y.view(-1, 1).repeat(1, w) | |
xx = x.view(1, -1).repeat(h, 1) | |
meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) | |
return meshed | |
class ResBlock2d(nn.Module): | |
""" | |
Res block, preserve spatial resolution. | |
""" | |
def __init__(self, in_features, kernel_size, padding): | |
super(ResBlock2d, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
padding=padding) | |
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
padding=padding) | |
self.norm1 = nn.InstanceNorm2d(in_features, affine=True) | |
self.norm2 = nn.InstanceNorm2d(in_features, affine=True) | |
def forward(self, x): | |
out = self.norm1(x) | |
out = F.relu(out) | |
out = self.conv1(out) | |
out = self.norm2(out) | |
out = F.relu(out) | |
out = self.conv2(out) | |
out += x | |
return out | |
class UpBlock2d(nn.Module): | |
""" | |
Upsampling block for use in decoder. | |
""" | |
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
super(UpBlock2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups) | |
self.norm = nn.InstanceNorm2d(out_features, affine=True) | |
def forward(self, x): | |
out = F.interpolate(x, scale_factor=2) | |
out = self.conv(out) | |
out = self.norm(out) | |
out = F.relu(out) | |
return out | |
class DownBlock2d(nn.Module): | |
""" | |
Downsampling block for use in encoder. | |
""" | |
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
super(DownBlock2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
padding=padding, groups=groups) | |
self.norm = nn.InstanceNorm2d(out_features, affine=True) | |
self.pool = nn.AvgPool2d(kernel_size=(2, 2)) | |
def forward(self, x): | |
out = self.conv(x) | |
out = self.norm(out) | |
out = F.relu(out) | |
out = self.pool(out) | |
return out | |
class SameBlock2d(nn.Module): | |
""" | |
Simple block, preserve spatial resolution. | |
""" | |
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1): | |
super(SameBlock2d, self).__init__() | |
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, | |
kernel_size=kernel_size, padding=padding, groups=groups) | |
self.norm = nn.InstanceNorm2d(out_features, affine=True) | |
def forward(self, x): | |
out = self.conv(x) | |
out = self.norm(out) | |
out = F.relu(out) | |
return out | |
class Encoder(nn.Module): | |
""" | |
Hourglass Encoder | |
""" | |
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
super(Encoder, self).__init__() | |
down_blocks = [] | |
for i in range(num_blocks): | |
down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), | |
min(max_features, block_expansion * (2 ** (i + 1))), | |
kernel_size=3, padding=1)) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
def forward(self, x): | |
outs = [x] | |
#print('encoder:' ,outs[-1].shape) | |
for down_block in self.down_blocks: | |
outs.append(down_block(outs[-1])) | |
#print('encoder:' ,outs[-1].shape) | |
return outs | |
class Decoder(nn.Module): | |
""" | |
Hourglass Decoder | |
""" | |
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
super(Decoder, self).__init__() | |
up_blocks = [] | |
self.out_channels = [] | |
for i in range(num_blocks)[::-1]: | |
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) | |
self.out_channels.append(in_filters) | |
out_filters = min(max_features, block_expansion * (2 ** i)) | |
up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1)) | |
self.up_blocks = nn.ModuleList(up_blocks) | |
self.out_channels.append(block_expansion + in_features) | |
# self.out_filters = block_expansion + in_features | |
def forward(self, x, mode = 0): | |
out = x.pop() | |
outs = [] | |
for up_block in self.up_blocks: | |
out = up_block(out) | |
skip = x.pop() | |
out = torch.cat([out, skip], dim=1) | |
outs.append(out) | |
if(mode == 0): | |
return out | |
else: | |
return outs | |
class Hourglass(nn.Module): | |
""" | |
Hourglass architecture. | |
""" | |
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
super(Hourglass, self).__init__() | |
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) | |
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) | |
self.out_channels = self.decoder.out_channels | |
# self.out_filters = self.decoder.out_filters | |
def forward(self, x, mode = 0): | |
return self.decoder(self.encoder(x), mode) | |
class AntiAliasInterpolation2d(nn.Module): | |
""" | |
Band-limited downsampling, for better preservation of the input signal. | |
""" | |
def __init__(self, channels, scale): | |
super(AntiAliasInterpolation2d, self).__init__() | |
sigma = (1 / scale - 1) / 2 | |
kernel_size = 2 * round(sigma * 4) + 1 | |
self.ka = kernel_size // 2 | |
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka | |
kernel_size = [kernel_size, kernel_size] | |
sigma = [sigma, sigma] | |
# The gaussian kernel is the product of the | |
# gaussian function of each dimension. | |
kernel = 1 | |
meshgrids = torch.meshgrid( | |
[ | |
torch.arange(size, dtype=torch.float32) | |
for size in kernel_size | |
] | |
) | |
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
mean = (size - 1) / 2 | |
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) | |
# Make sure sum of values in gaussian kernel equals 1. | |
kernel = kernel / torch.sum(kernel) | |
# Reshape to depthwise convolutional weight | |
kernel = kernel.view(1, 1, *kernel.size()) | |
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
self.register_buffer('weight', kernel) | |
self.groups = channels | |
self.scale = scale | |
def forward(self, input): | |
if self.scale == 1.0: | |
return input | |
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) | |
out = F.conv2d(out, weight=self.weight, groups=self.groups) | |
out = F.interpolate(out, scale_factor=(self.scale, self.scale)) | |
return out | |
def to_homogeneous(coordinates): | |
ones_shape = list(coordinates.shape) | |
ones_shape[-1] = 1 | |
ones = torch.ones(ones_shape).type(coordinates.type()) | |
return torch.cat([coordinates, ones], dim=-1) | |
def from_homogeneous(coordinates): | |
return coordinates[..., :2] / coordinates[..., 2:3] |