Spaces:
Runtime error
Runtime error
import os | |
from skimage import io, img_as_float32 | |
from skimage.color import gray2rgb | |
from sklearn.model_selection import train_test_split | |
from imageio import mimread | |
from skimage.transform import resize | |
import numpy as np | |
from torch.utils.data import Dataset | |
from augmentation import AllAugmentationTransform | |
import glob | |
from functools import partial | |
def read_video(name, frame_shape): | |
""" | |
Read video which can be: | |
- an image of concatenated frames | |
- '.mp4' and'.gif' | |
- folder with videos | |
""" | |
if os.path.isdir(name): | |
frames = sorted(os.listdir(name)) | |
num_frames = len(frames) | |
video_array = np.array( | |
[img_as_float32(io.imread(os.path.join(name, frames[idx]))) for idx in range(num_frames)]) | |
elif name.lower().endswith('.png') or name.lower().endswith('.jpg'): | |
image = io.imread(name) | |
if len(image.shape) == 2 or image.shape[2] == 1: | |
image = gray2rgb(image) | |
if image.shape[2] == 4: | |
image = image[..., :3] | |
image = img_as_float32(image) | |
video_array = np.moveaxis(image, 1, 0) | |
video_array = video_array.reshape((-1,) + frame_shape) | |
video_array = np.moveaxis(video_array, 1, 2) | |
elif name.lower().endswith('.gif') or name.lower().endswith('.mp4') or name.lower().endswith('.mov'): | |
video = mimread(name) | |
if len(video[0].shape) == 2: | |
video = [gray2rgb(frame) for frame in video] | |
if frame_shape is not None: | |
video = np.array([resize(frame, frame_shape) for frame in video]) | |
video = np.array(video) | |
if video.shape[-1] == 4: | |
video = video[..., :3] | |
video_array = img_as_float32(video) | |
else: | |
raise Exception("Unknown file extensions %s" % name) | |
return video_array | |
class FramesDataset(Dataset): | |
""" | |
Dataset of videos, each video can be represented as: | |
- an image of concatenated frames | |
- '.mp4' or '.gif' | |
- folder with all frames | |
""" | |
def __init__(self, root_dir, frame_shape=(256, 256, 3), id_sampling=False, is_train=True, | |
random_seed=0, pairs_list=None, augmentation_params=None): | |
self.root_dir = root_dir | |
self.videos = os.listdir(root_dir) | |
self.frame_shape = frame_shape | |
print(self.frame_shape) | |
self.pairs_list = pairs_list | |
self.id_sampling = id_sampling | |
if os.path.exists(os.path.join(root_dir, 'train')): | |
assert os.path.exists(os.path.join(root_dir, 'test')) | |
print("Use predefined train-test split.") | |
if id_sampling: | |
train_videos = {os.path.basename(video).split('#')[0] for video in | |
os.listdir(os.path.join(root_dir, 'train'))} | |
train_videos = list(train_videos) | |
else: | |
train_videos = os.listdir(os.path.join(root_dir, 'train')) | |
test_videos = os.listdir(os.path.join(root_dir, 'test')) | |
self.root_dir = os.path.join(self.root_dir, 'train' if is_train else 'test') | |
else: | |
print("Use random train-test split.") | |
train_videos, test_videos = train_test_split(self.videos, random_state=random_seed, test_size=0.2) | |
if is_train: | |
self.videos = train_videos | |
else: | |
self.videos = test_videos | |
self.is_train = is_train | |
if self.is_train: | |
self.transform = AllAugmentationTransform(**augmentation_params) | |
else: | |
self.transform = None | |
def __len__(self): | |
return len(self.videos) | |
def __getitem__(self, idx): | |
if self.is_train and self.id_sampling: | |
name = self.videos[idx] | |
path = np.random.choice(glob.glob(os.path.join(self.root_dir, name + '*.mp4'))) | |
else: | |
name = self.videos[idx] | |
path = os.path.join(self.root_dir, name) | |
video_name = os.path.basename(path) | |
if self.is_train and os.path.isdir(path): | |
frames = os.listdir(path) | |
num_frames = len(frames) | |
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) | |
if self.frame_shape is not None: | |
resize_fn = partial(resize, output_shape=self.frame_shape) | |
else: | |
resize_fn = img_as_float32 | |
if type(frames[0]) is bytes: | |
video_array = [resize_fn(io.imread(os.path.join(path, frames[idx].decode('utf-8')))) for idx in | |
frame_idx] | |
else: | |
video_array = [resize_fn(io.imread(os.path.join(path, frames[idx]))) for idx in frame_idx] | |
else: | |
video_array = read_video(path, frame_shape=self.frame_shape) | |
num_frames = len(video_array) | |
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) if self.is_train else range( | |
num_frames) | |
video_array = video_array[frame_idx] | |
if self.transform is not None: | |
video_array = self.transform(video_array) | |
out = {} | |
if self.is_train: | |
source = np.array(video_array[0], dtype='float32') | |
driving = np.array(video_array[1], dtype='float32') | |
out['driving'] = driving.transpose((2, 0, 1)) | |
out['source'] = source.transpose((2, 0, 1)) | |
else: | |
video = np.array(video_array, dtype='float32') | |
out['video'] = video.transpose((3, 0, 1, 2)) | |
out['name'] = video_name | |
return out | |
class DatasetRepeater(Dataset): | |
""" | |
Pass several times over the same dataset for better i/o performance | |
""" | |
def __init__(self, dataset, num_repeats=100): | |
self.dataset = dataset | |
self.num_repeats = num_repeats | |
def __len__(self): | |
return self.num_repeats * self.dataset.__len__() | |
def __getitem__(self, idx): | |
return self.dataset[idx % self.dataset.__len__()] | |