Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,8 @@ import time
|
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
16 |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
|
|
|
|
17 |
import safetensors.torch
|
18 |
from safetensors.torch import load_file
|
19 |
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
|
@@ -26,13 +28,20 @@ os.environ["TRANSFORMERS_CACHE"] = cache_path
|
|
26 |
os.environ["HF_HUB_CACHE"] = cache_path
|
27 |
os.environ["HF_HOME"] = cache_path
|
28 |
|
|
|
|
|
|
|
|
|
29 |
|
30 |
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=
|
32 |
-
good_vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
|
38 |
config = CLIPConfig.from_pretrained(model_id)
|
@@ -44,8 +53,7 @@ pipe.text_encoder = clip_model.text_model
|
|
44 |
pipe.tokenizer_max_length = 248
|
45 |
pipe.text_encoder.dtype = torch.bfloat16
|
46 |
|
47 |
-
pipe.
|
48 |
-
|
49 |
|
50 |
# Load LoRAs from JSON file
|
51 |
with open('loras.json', 'r') as f:
|
|
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
16 |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
17 |
+
from diffusers.models.transformers import FluxTransformer2DModel
|
18 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
19 |
import safetensors.torch
|
20 |
from safetensors.torch import load_file
|
21 |
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
|
|
|
28 |
os.environ["HF_HUB_CACHE"] = cache_path
|
29 |
os.environ["HF_HOME"] = cache_path
|
30 |
|
31 |
+
torch.set_float32_matmul_precision("medium")
|
32 |
+
|
33 |
+
dtype = torch.bfloat16
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
|
36 |
torch.backends.cuda.matmul.allow_tf32 = True
|
37 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=bfloat16).to(device)
|
38 |
+
good_vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=bfloat16).to(device)
|
39 |
|
40 |
+
dtype = torch.bfloat16
|
41 |
+
base_model = "AlekseyCalvin/HSTcolor_FlexSoonr"
|
42 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda")
|
43 |
+
#pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
|
44 |
+
torch.cuda.empty_cache()
|
45 |
|
46 |
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
|
47 |
config = CLIPConfig.from_pretrained(model_id)
|
|
|
53 |
pipe.tokenizer_max_length = 248
|
54 |
pipe.text_encoder.dtype = torch.bfloat16
|
55 |
|
56 |
+
pipe.vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=dtype).to(device)
|
|
|
57 |
|
58 |
# Load LoRAs from JSON file
|
59 |
with open('loras.json', 'r') as f:
|