AlekseyCalvin commited on
Commit
9f0b5d0
·
verified ·
1 Parent(s): 9285ad5

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +9 -3
app2.py CHANGED
@@ -5,8 +5,12 @@ import logging
5
  import torch
6
  from PIL import Image
7
  from os import path
 
 
 
 
8
  import spaces
9
- from diffusers import DiffusionPipeline, AutoencoderTiny
10
  from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
11
  from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
12
  from diffusers.models.transformers import FluxTransformer2DModel
@@ -14,6 +18,7 @@ import copy
14
  import random
15
  import time
16
  import safetensors.torch
 
17
  from safetensors.torch import load_file
18
  from huggingface_hub import HfFileSystem, ModelCard
19
  from huggingface_hub import login, hf_hub_download
@@ -34,7 +39,7 @@ with open('loras.json', 'r') as f:
34
  # Initialize the base model
35
  dtype = torch.bfloat16
36
  device = "cuda" if torch.cuda.is_available() else "cpu"
37
- base_model = "AlekseyCalvin/SilverAgePoets_FluxS_TestAlpha_Diffusers"
38
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda")
39
  #pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
40
  torch.cuda.empty_cache()
@@ -50,12 +55,13 @@ if clipmodel == "norm":
50
  maxtokens = 77
51
  clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
52
  clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
 
53
 
54
  pipe.tokenizer = clip_processor.tokenizer
55
  pipe.text_encoder = clip_model.text_model
56
  pipe.tokenizer_max_length = maxtokens
57
  pipe.text_encoder.dtype = torch.bfloat16
58
-
59
 
60
  MAX_SEED = 2**32-1
61
 
 
5
  import torch
6
  from PIL import Image
7
  from os import path
8
+ from torchvision import transforms
9
+ from dataclasses import dataclass
10
+ import math
11
+ from typing import Callable
12
  import spaces
13
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
14
  from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
15
  from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
16
  from diffusers.models.transformers import FluxTransformer2DModel
 
18
  import random
19
  import time
20
  import safetensors.torch
21
+ from tqdm import tqdm
22
  from safetensors.torch import load_file
23
  from huggingface_hub import HfFileSystem, ModelCard
24
  from huggingface_hub import login, hf_hub_download
 
39
  # Initialize the base model
40
  dtype = torch.bfloat16
41
  device = "cuda" if torch.cuda.is_available() else "cpu"
42
+ base_model = "AlekseyCalvin/Artsy_Lite_Flux_v1_by_jurdn_Diffusers"
43
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda")
44
  #pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
45
  torch.cuda.empty_cache()
 
55
  maxtokens = 77
56
  clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
57
  clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
58
+ t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
59
 
60
  pipe.tokenizer = clip_processor.tokenizer
61
  pipe.text_encoder = clip_model.text_model
62
  pipe.tokenizer_max_length = maxtokens
63
  pipe.text_encoder.dtype = torch.bfloat16
64
+ pipe.text_encoder_2 = t5.text_model
65
 
66
  MAX_SEED = 2**32-1
67