Upload 2 files
Browse files
app.py
CHANGED
@@ -131,7 +131,7 @@ def load_pipeline(repo_id: str, cn_on: bool, model_type: str, task: str, dtype_s
|
|
131 |
pipe_i2i = pipeline_i2i.from_pipe(pipe, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype)
|
132 |
elif ".safetensors" in repo_id or ".gguf" in repo_id: # from single file
|
133 |
file_url = repo_id.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
134 |
-
if ".gguf" in file_url: transformer_model.from_single_file(file_url, subfolder="transformer",
|
135 |
quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
136 |
else: transformer = transformer_model.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model)
|
137 |
pipe = pipeline.from_pretrained(single_file_base_model, transformer=transformer, torch_dtype=dtype, token=hf_token, **kwargs)
|
@@ -160,7 +160,7 @@ def change_base_model(repo_id: str, cn_on: bool, disable_model_cache: bool, mode
|
|
160 |
global pipe, pipe_i2i, taef1, good_vae, controlnet_union, controlnet, last_model, last_cn_on, last_task, last_dtype_str, dtype
|
161 |
try:
|
162 |
if not disable_model_cache and (repo_id == last_model and cn_on is last_cn_on and task == last_task and dtype_str == last_dtype_str)\
|
163 |
-
or ((not is_repo_name(repo_id) or not is_repo_exists(repo_id)) and not ".safetensors" in repo_id): return gr.update()
|
164 |
unload_lora()
|
165 |
pipe.to("cpu")
|
166 |
pipe_i2i.to("cpu")
|
|
|
131 |
pipe_i2i = pipeline_i2i.from_pipe(pipe, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype)
|
132 |
elif ".safetensors" in repo_id or ".gguf" in repo_id: # from single file
|
133 |
file_url = repo_id.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
134 |
+
if ".gguf" in file_url: transformer = transformer_model.from_single_file(file_url, subfolder="transformer",
|
135 |
quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
136 |
else: transformer = transformer_model.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model)
|
137 |
pipe = pipeline.from_pretrained(single_file_base_model, transformer=transformer, torch_dtype=dtype, token=hf_token, **kwargs)
|
|
|
160 |
global pipe, pipe_i2i, taef1, good_vae, controlnet_union, controlnet, last_model, last_cn_on, last_task, last_dtype_str, dtype
|
161 |
try:
|
162 |
if not disable_model_cache and (repo_id == last_model and cn_on is last_cn_on and task == last_task and dtype_str == last_dtype_str)\
|
163 |
+
or ((not is_repo_name(repo_id) or not is_repo_exists(repo_id)) and not ".safetensors" in repo_id and not ".gguf" in repo_id): return gr.update()
|
164 |
unload_lora()
|
165 |
pipe.to("cpu")
|
166 |
pipe_i2i.to("cpu")
|