Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,74 +14,9 @@ with open('loras.json', 'r') as f:
|
|
| 14 |
# Initialize the base model
|
| 15 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 16 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 17 |
-
original_load_lora = copy.deepcopy(pipe.load_lora_into_transformer)
|
| 18 |
pipe.to("cuda")
|
| 19 |
|
| 20 |
-
|
| 21 |
-
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
| 22 |
-
|
| 23 |
-
keys = list(state_dict.keys())
|
| 24 |
-
|
| 25 |
-
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
| 26 |
-
state_dict = {
|
| 27 |
-
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
if len(state_dict.keys()) > 0:
|
| 31 |
-
# check with first key if is not in peft format
|
| 32 |
-
first_key = next(iter(state_dict.keys()))
|
| 33 |
-
if "lora_A" not in first_key:
|
| 34 |
-
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
| 35 |
-
|
| 36 |
-
if adapter_name in getattr(transformer, "peft_config", {}):
|
| 37 |
-
raise ValueError(
|
| 38 |
-
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
rank = {}
|
| 42 |
-
for key, val in state_dict.items():
|
| 43 |
-
if "lora_B" in key:
|
| 44 |
-
rank[key] = val.shape[1]
|
| 45 |
-
|
| 46 |
-
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
|
| 47 |
-
if "use_dora" in lora_config_kwargs:
|
| 48 |
-
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
| 49 |
-
raise ValueError(
|
| 50 |
-
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
| 51 |
-
)
|
| 52 |
-
else:
|
| 53 |
-
lora_config_kwargs.pop("use_dora")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
lora_config_kwargs["lora_alpha"] = 42
|
| 57 |
-
lora_config = LoraConfig(**lora_config_kwargs)
|
| 58 |
-
|
| 59 |
-
# adapter_name
|
| 60 |
-
if adapter_name is None:
|
| 61 |
-
adapter_name = get_adapter_name(transformer)
|
| 62 |
-
|
| 63 |
-
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
| 64 |
-
# otherwise loading LoRA weights will lead to an error
|
| 65 |
-
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
| 66 |
-
|
| 67 |
-
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
|
| 68 |
-
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
|
| 69 |
-
|
| 70 |
-
if incompatible_keys is not None:
|
| 71 |
-
# check only for unexpected keys
|
| 72 |
-
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
| 73 |
-
if unexpected_keys:
|
| 74 |
-
logger.warning(
|
| 75 |
-
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
| 76 |
-
f" {unexpected_keys}. "
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
# Offload back.
|
| 80 |
-
if is_model_cpu_offload:
|
| 81 |
-
_pipeline.enable_model_cpu_offload()
|
| 82 |
-
elif is_sequential_cpu_offload:
|
| 83 |
-
_pipeline.enable_sequential_cpu_offload()
|
| 84 |
-
# Unsafe code />
|
| 85 |
|
| 86 |
def update_selection(evt: gr.SelectData):
|
| 87 |
selected_lora = loras[evt.index]
|
|
@@ -95,7 +30,7 @@ def update_selection(evt: gr.SelectData):
|
|
| 95 |
)
|
| 96 |
|
| 97 |
@spaces.GPU(duration=90)
|
| 98 |
-
def run_lora(prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 99 |
if selected_index is None:
|
| 100 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 101 |
|
|
@@ -115,18 +50,19 @@ def run_lora(prompt, cfg_scale, steps, selected_index, seed, width, height, lora
|
|
| 115 |
pipe.load_lora_into_transformer = original_load_lora
|
| 116 |
|
| 117 |
# Set random seed for reproducibility
|
|
|
|
|
|
|
| 118 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 119 |
|
| 120 |
# Generate image
|
| 121 |
image = pipe(
|
| 122 |
prompt=f"{prompt} {trigger_word}",
|
| 123 |
-
#negative_prompt=negative_prompt,
|
| 124 |
num_inference_steps=steps,
|
| 125 |
guidance_scale=cfg_scale,
|
| 126 |
width=width,
|
| 127 |
height=height,
|
| 128 |
generator=generator,
|
| 129 |
-
|
| 130 |
).images[0]
|
| 131 |
|
| 132 |
# Unload LoRA weights
|
|
@@ -159,10 +95,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
| 159 |
result = gr.Image(label="Generated Image")
|
| 160 |
|
| 161 |
with gr.Row():
|
| 162 |
-
|
| 163 |
-
#prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
|
| 164 |
-
#negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
|
| 165 |
-
|
| 166 |
with gr.Column():
|
| 167 |
with gr.Row():
|
| 168 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
|
@@ -173,7 +106,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
| 173 |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 174 |
|
| 175 |
with gr.Row():
|
| 176 |
-
|
|
|
|
| 177 |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.85)
|
| 178 |
|
| 179 |
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
|
|
@@ -181,7 +115,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
| 181 |
gr.on(
|
| 182 |
triggers=[generate_button.click, prompt.submit],
|
| 183 |
fn=run_lora,
|
| 184 |
-
inputs=[prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale],
|
| 185 |
outputs=[result]
|
| 186 |
)
|
| 187 |
|
|
|
|
| 14 |
# Initialize the base model
|
| 15 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 16 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
|
| 17 |
pipe.to("cuda")
|
| 18 |
|
| 19 |
+
MAX_SEED = 2**32-1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def update_selection(evt: gr.SelectData):
|
| 22 |
selected_lora = loras[evt.index]
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
@spaces.GPU(duration=90)
|
| 33 |
+
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 34 |
if selected_index is None:
|
| 35 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 36 |
|
|
|
|
| 50 |
pipe.load_lora_into_transformer = original_load_lora
|
| 51 |
|
| 52 |
# Set random seed for reproducibility
|
| 53 |
+
if randomize_seed:
|
| 54 |
+
seed = random.randint(0, MAX_SEED)
|
| 55 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 56 |
|
| 57 |
# Generate image
|
| 58 |
image = pipe(
|
| 59 |
prompt=f"{prompt} {trigger_word}",
|
|
|
|
| 60 |
num_inference_steps=steps,
|
| 61 |
guidance_scale=cfg_scale,
|
| 62 |
width=width,
|
| 63 |
height=height,
|
| 64 |
generator=generator,
|
| 65 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 66 |
).images[0]
|
| 67 |
|
| 68 |
# Unload LoRA weights
|
|
|
|
| 95 |
result = gr.Image(label="Generated Image")
|
| 96 |
|
| 97 |
with gr.Row():
|
| 98 |
+
with gr.Accordion("Advanced Settings", open=False)
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Column():
|
| 100 |
with gr.Row():
|
| 101 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
|
|
|
| 106 |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 107 |
|
| 108 |
with gr.Row():
|
| 109 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 110 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 111 |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.85)
|
| 112 |
|
| 113 |
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
|
|
|
|
| 115 |
gr.on(
|
| 116 |
triggers=[generate_button.click, prompt.submit],
|
| 117 |
fn=run_lora,
|
| 118 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 119 |
outputs=[result]
|
| 120 |
)
|
| 121 |
|