Spaces:
Running
on
Zero
Running
on
Zero
Create app_14B.py
Browse files- app_14B.py +151 -0
app_14B.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PyTorch 2.8 (temporary hack)
|
2 |
+
import os
|
3 |
+
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
4 |
+
|
5 |
+
# Actual demo code
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
9 |
+
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
10 |
+
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
|
11 |
+
from diffusers.utils.export_utils import export_to_video
|
12 |
+
import gradio as gr
|
13 |
+
import tempfile
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
import random
|
17 |
+
|
18 |
+
from optimization import optimize_pipeline_
|
19 |
+
|
20 |
+
|
21 |
+
MODEL_ID = "linoyts/Wan2.2-T2V-A14B-Diffusers-BF16"
|
22 |
+
|
23 |
+
LANDSCAPE_WIDTH = 832
|
24 |
+
LANDSCAPE_HEIGHT = 480
|
25 |
+
MAX_SEED = np.iinfo(np.int32).max
|
26 |
+
|
27 |
+
FIXED_FPS = 24
|
28 |
+
MIN_FRAMES_MODEL = 8
|
29 |
+
MAX_FRAMES_MODEL = 81
|
30 |
+
|
31 |
+
|
32 |
+
pipe = WanPipeline.from_pretrained(MODEL_ID,
|
33 |
+
transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
|
34 |
+
subfolder='transformer',
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
device_map='cuda',
|
37 |
+
),
|
38 |
+
transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
|
39 |
+
subfolder='transformer_2',
|
40 |
+
torch_dtype=torch.bfloat16,
|
41 |
+
device_map='cuda',
|
42 |
+
),
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
).to('cuda')
|
45 |
+
|
46 |
+
|
47 |
+
optimize_pipeline_(pipe,
|
48 |
+
|
49 |
+
prompt='prompt',
|
50 |
+
height=LANDSCAPE_HEIGHT,
|
51 |
+
width=LANDSCAPE_WIDTH,
|
52 |
+
num_frames=MAX_FRAMES_MODEL,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
57 |
+
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def get_duration(
|
63 |
+
|
64 |
+
prompt,
|
65 |
+
negative_prompt,
|
66 |
+
num_frames,
|
67 |
+
guidance_scale,
|
68 |
+
steps,
|
69 |
+
seed,
|
70 |
+
randomize_seed,
|
71 |
+
progress,
|
72 |
+
):
|
73 |
+
return steps * 15
|
74 |
+
|
75 |
+
@spaces.GPU(duration=get_duration)
|
76 |
+
def generate_video(
|
77 |
+
prompt,
|
78 |
+
negative_prompt=default_negative_prompt,
|
79 |
+
num_frames = MAX_FRAMES_MODEL,
|
80 |
+
guidance_scale = 3.5,
|
81 |
+
steps = 28,
|
82 |
+
seed = 42,
|
83 |
+
randomize_seed = False,
|
84 |
+
progress=gr.Progress(track_tqdm=True),
|
85 |
+
):
|
86 |
+
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
87 |
+
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
88 |
+
|
89 |
+
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
90 |
+
|
91 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
output_frames_list = pipe(
|
97 |
+
prompt=prompt, negative_prompt=negative_prompt,
|
98 |
+
height=target_h, width=target_w, num_frames=num_frames,
|
99 |
+
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
|
100 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
101 |
+
).frames[0]
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
107 |
+
video_path = tmpfile.name
|
108 |
+
|
109 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
110 |
+
|
111 |
+
return video_path, current_seed
|
112 |
+
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
|
115 |
+
gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
|
119 |
+
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
120 |
+
num_frames_input = gr.Slider(minimum=MIN_FRAMES_MODEL, maximum=MAX_FRAMES_MODEL, step=1, value=MAX_FRAMES_MODEL, label="Frames")
|
121 |
+
|
122 |
+
with gr.Accordion("Advanced Settings", open=False):
|
123 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
124 |
+
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
125 |
+
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
126 |
+
steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=28, label="Inference Steps")
|
127 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale")
|
128 |
+
|
129 |
+
generate_button = gr.Button("Generate Video", variant="primary")
|
130 |
+
with gr.Column():
|
131 |
+
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
|
132 |
+
|
133 |
+
ui_inputs = [
|
134 |
+
prompt_input,
|
135 |
+
negative_prompt_input, num_frames_input,
|
136 |
+
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
|
137 |
+
]
|
138 |
+
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
139 |
+
|
140 |
+
gr.Examples(
|
141 |
+
examples=[
|
142 |
+
[
|
143 |
+
"wan_i2v_input.JPG",
|
144 |
+
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
145 |
+
],
|
146 |
+
],
|
147 |
+
inputs=[ prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
|
148 |
+
)
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
demo.queue().launch(mcp_server=True)
|