rahul7star commited on
Commit
f763343
·
verified ·
1 Parent(s): b80d30c

Create app_14B.py

Browse files
Files changed (1) hide show
  1. app_14B.py +151 -0
app_14B.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PyTorch 2.8 (temporary hack)
2
+ import os
3
+ os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
4
+
5
+ # Actual demo code
6
+ import spaces
7
+ import torch
8
+ from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
9
+ from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
10
+ from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
11
+ from diffusers.utils.export_utils import export_to_video
12
+ import gradio as gr
13
+ import tempfile
14
+ import numpy as np
15
+ from PIL import Image
16
+ import random
17
+
18
+ from optimization import optimize_pipeline_
19
+
20
+
21
+ MODEL_ID = "linoyts/Wan2.2-T2V-A14B-Diffusers-BF16"
22
+
23
+ LANDSCAPE_WIDTH = 832
24
+ LANDSCAPE_HEIGHT = 480
25
+ MAX_SEED = np.iinfo(np.int32).max
26
+
27
+ FIXED_FPS = 24
28
+ MIN_FRAMES_MODEL = 8
29
+ MAX_FRAMES_MODEL = 81
30
+
31
+
32
+ pipe = WanPipeline.from_pretrained(MODEL_ID,
33
+ transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
34
+ subfolder='transformer',
35
+ torch_dtype=torch.bfloat16,
36
+ device_map='cuda',
37
+ ),
38
+ transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16',
39
+ subfolder='transformer_2',
40
+ torch_dtype=torch.bfloat16,
41
+ device_map='cuda',
42
+ ),
43
+ torch_dtype=torch.bfloat16,
44
+ ).to('cuda')
45
+
46
+
47
+ optimize_pipeline_(pipe,
48
+
49
+ prompt='prompt',
50
+ height=LANDSCAPE_HEIGHT,
51
+ width=LANDSCAPE_WIDTH,
52
+ num_frames=MAX_FRAMES_MODEL,
53
+ )
54
+
55
+
56
+ default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
57
+ default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
58
+
59
+
60
+
61
+
62
+ def get_duration(
63
+
64
+ prompt,
65
+ negative_prompt,
66
+ num_frames,
67
+ guidance_scale,
68
+ steps,
69
+ seed,
70
+ randomize_seed,
71
+ progress,
72
+ ):
73
+ return steps * 15
74
+
75
+ @spaces.GPU(duration=get_duration)
76
+ def generate_video(
77
+ prompt,
78
+ negative_prompt=default_negative_prompt,
79
+ num_frames = MAX_FRAMES_MODEL,
80
+ guidance_scale = 3.5,
81
+ steps = 28,
82
+ seed = 42,
83
+ randomize_seed = False,
84
+ progress=gr.Progress(track_tqdm=True),
85
+ ):
86
+ target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
87
+ target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
88
+
89
+ num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
90
+
91
+ current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
92
+
93
+
94
+
95
+
96
+ output_frames_list = pipe(
97
+ prompt=prompt, negative_prompt=negative_prompt,
98
+ height=target_h, width=target_w, num_frames=num_frames,
99
+ guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
100
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
101
+ ).frames[0]
102
+
103
+
104
+
105
+
106
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
107
+ video_path = tmpfile.name
108
+
109
+ export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
110
+
111
+ return video_path, current_seed
112
+
113
+ with gr.Blocks() as demo:
114
+ gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
115
+ gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
116
+ with gr.Row():
117
+ with gr.Column():
118
+
119
+ prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
120
+ num_frames_input = gr.Slider(minimum=MIN_FRAMES_MODEL, maximum=MAX_FRAMES_MODEL, step=1, value=MAX_FRAMES_MODEL, label="Frames")
121
+
122
+ with gr.Accordion("Advanced Settings", open=False):
123
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
124
+ seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
125
+ randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
126
+ steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=28, label="Inference Steps")
127
+ guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale")
128
+
129
+ generate_button = gr.Button("Generate Video", variant="primary")
130
+ with gr.Column():
131
+ video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
132
+
133
+ ui_inputs = [
134
+ prompt_input,
135
+ negative_prompt_input, num_frames_input,
136
+ guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
137
+ ]
138
+ generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
139
+
140
+ gr.Examples(
141
+ examples=[
142
+ [
143
+ "wan_i2v_input.JPG",
144
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
145
+ ],
146
+ ],
147
+ inputs=[ prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
148
+ )
149
+
150
+ if __name__ == "__main__":
151
+ demo.queue().launch(mcp_server=True)