Spaces:
Running
on
Zero
Running
on
Zero
Update app_t2v.py
Browse files- app_t2v.py +44 -16
app_t2v.py
CHANGED
@@ -14,25 +14,53 @@ from diffusers.utils import export_to_video
|
|
14 |
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
FIXED_FPS = 16
|
17 |
-
DEFAULT_NEGATIVE_PROMPT =
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Setup
|
20 |
-
dtype = torch.float16 #
|
21 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
-
# Load model
|
24 |
-
vae = AutoencoderKLWan.from_pretrained(
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
37 |
generator = torch.Generator(device=device).manual_seed(current_seed)
|
38 |
|
@@ -54,7 +82,7 @@ def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_
|
|
54 |
|
55 |
# Gradio UI
|
56 |
with gr.Blocks() as demo:
|
57 |
-
gr.Markdown("## 🎬 Wan2.2 Text-to-Video Generator with
|
58 |
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
|
|
14 |
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
FIXED_FPS = 16
|
17 |
+
DEFAULT_NEGATIVE_PROMPT = (
|
18 |
+
"色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,"
|
19 |
+
"最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,"
|
20 |
+
"画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
|
21 |
+
)
|
22 |
|
23 |
# Setup
|
24 |
+
dtype = torch.float16 # using float16 for broader compatibility
|
25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
|
27 |
+
# Load model components on correct device
|
28 |
+
vae = AutoencoderKLWan.from_pretrained(
|
29 |
+
MODEL_ID, subfolder="vae", torch_dtype=torch.float32
|
30 |
+
).to(device)
|
31 |
+
|
32 |
+
pipe = WanPipeline.from_pretrained(
|
33 |
+
MODEL_ID, vae=vae, torch_dtype=dtype
|
34 |
+
).to(device)
|
35 |
+
|
36 |
+
# Warm-up call to reduce cold-start latency
|
37 |
+
_ = pipe(
|
38 |
+
prompt="warmup",
|
39 |
+
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
40 |
+
height=512,
|
41 |
+
width=768,
|
42 |
+
num_frames=8,
|
43 |
+
num_inference_steps=2,
|
44 |
+
generator=torch.Generator(device=device).manual_seed(0),
|
45 |
+
).frames[0]
|
46 |
+
|
47 |
+
# Estimate duration for Hugging Face Spaces GPU usage
|
48 |
+
def get_duration(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps, seed, randomize_seed):
|
49 |
+
return int(num_steps * 15)
|
50 |
+
|
51 |
+
@spaces.GPU(duration=get_duration)
|
52 |
+
def generate_video(
|
53 |
+
prompt,
|
54 |
+
negative_prompt,
|
55 |
+
height,
|
56 |
+
width,
|
57 |
+
num_frames,
|
58 |
+
guidance_scale,
|
59 |
+
guidance_scale_2,
|
60 |
+
num_steps,
|
61 |
+
seed,
|
62 |
+
randomize_seed
|
63 |
+
):
|
64 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
65 |
generator = torch.Generator(device=device).manual_seed(current_seed)
|
66 |
|
|
|
82 |
|
83 |
# Gradio UI
|
84 |
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("## 🎬 Wan2.2 Text-to-Video Generator with Hugging Face Spaces GPU")
|
86 |
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|