rahul7star commited on
Commit
0746826
·
verified ·
1 Parent(s): 90f5ebb

Create app_fast.py

Browse files
Files changed (1) hide show
  1. app_fast.py +165 -0
app_fast.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
3
+ from diffusers.utils import export_to_video
4
+ import gradio as gr
5
+ import tempfile
6
+ import spaces
7
+ import numpy as np
8
+ from PIL import Image
9
+ import random
10
+
11
+ MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
12
+ vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
13
+
14
+ # Initialize pipelines
15
+ text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
16
+ image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
17
+
18
+ for pipe in [text_to_video_pipe, image_to_video_pipe]:
19
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
20
+ pipe.to("cuda")
21
+
22
+ # Constants
23
+ MOD_VALUE = 32
24
+ DEFAULT_H_SLIDER_VALUE = 896
25
+ DEFAULT_W_SLIDER_VALUE = 896
26
+ NEW_FORMULA_MAX_AREA = 720 * 1024
27
+ SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
28
+ SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
29
+ MAX_SEED = np.iinfo(np.int32).max
30
+ FIXED_FPS = 24
31
+ MIN_FRAMES_MODEL = 25
32
+ MAX_FRAMES_MODEL = 193
33
+
34
+ default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
35
+ default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
36
+
37
+ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w):
38
+ orig_w, orig_h = pil_image.size
39
+ if orig_w <= 0 or orig_h <= 0:
40
+ return default_h, default_w
41
+ aspect_ratio = orig_h / orig_w
42
+
43
+ calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
44
+ calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
45
+ calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
46
+ calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
47
+
48
+ new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
49
+ new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
50
+
51
+ return new_h, new_w
52
+
53
+ def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
54
+ if uploaded_pil_image is None:
55
+ return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
56
+ try:
57
+ new_h, new_w = _calculate_new_dimensions_wan(
58
+ uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
59
+ SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
60
+ DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
61
+ )
62
+ return gr.update(value=new_h), gr.update(value=new_w)
63
+ except Exception as e:
64
+ gr.Warning("Error attempting to calculate new dimensions")
65
+ return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
66
+
67
+ def get_duration(input_image, prompt, height, width,
68
+ negative_prompt, duration_seconds,
69
+ guidance_scale, steps,
70
+ seed, randomize_seed,
71
+ progress):
72
+ if steps > 4 and duration_seconds > 4:
73
+ return 90
74
+ elif steps > 4 or duration_seconds > 4:
75
+ return 75
76
+ else:
77
+ return 60
78
+
79
+ @spaces.GPU(duration=get_duration)
80
+ def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
81
+ target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
82
+ target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
83
+
84
+ num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
85
+
86
+ current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
87
+
88
+ if input_image is not None:
89
+ resized_image = input_image.resize((target_w, target_h))
90
+ with torch.inference_mode():
91
+ output_frames_list = image_to_video_pipe(
92
+ image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
93
+ height=target_h, width=target_w, num_frames=num_frames,
94
+ guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
95
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
96
+ ).frames[0]
97
+ else:
98
+ with torch.inference_mode():
99
+ output_frames_list = text_to_video_pipe(
100
+ prompt=prompt, negative_prompt=negative_prompt,
101
+ height=target_h, width=target_w, num_frames=num_frames,
102
+ guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
103
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
104
+ ).frames[0]
105
+
106
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
107
+ video_path = tmpfile.name
108
+ export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
109
+ return video_path, current_seed
110
+
111
+ with gr.Blocks() as demo:
112
+ gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo")
113
+ gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")
114
+
115
+ with gr.Row():
116
+ with gr.Column():
117
+ input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)")
118
+ prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
119
+ duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
120
+
121
+ with gr.Accordion("Advanced Settings", open=False):
122
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
123
+ seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
124
+ randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
125
+ with gr.Row():
126
+ height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
127
+ width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
128
+ steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
129
+ guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
130
+ generate_button = gr.Button("Generate Video", variant="primary")
131
+ with gr.Column():
132
+ video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
133
+
134
+ input_image_component.upload(
135
+ fn=handle_image_upload_for_dims_wan,
136
+ inputs=[input_image_component, height_input, width_input],
137
+ outputs=[height_input, width_input]
138
+ )
139
+
140
+ input_image_component.clear(
141
+ fn=handle_image_upload_for_dims_wan,
142
+ inputs=[input_image_component, height_input, width_input],
143
+ outputs=[height_input, width_input]
144
+ )
145
+
146
+ ui_inputs = [
147
+ input_image_component, prompt_input, height_input, width_input,
148
+ negative_prompt_input, duration_seconds_input,
149
+ guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
150
+ ]
151
+ generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
152
+
153
+ gr.Examples(
154
+ examples=[
155
+ [None, "A person eating spaghetti", 1024, 720],
156
+ ["cat.png", "The cat removes the glasses from its eyes.", 1088, 800],
157
+ [None, "a penguin playfully dancing in the snow, Antarctica", 1024, 720],
158
+ ["peng.png", "a penguin running towards camera joyfully, Antarctica", 896, 512],
159
+ ],
160
+
161
+ inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
162
+ )
163
+
164
+ if __name__ == "__main__":
165
+ demo.queue().launch()