Spaces:
Running
on
Zero
Running
on
Zero
# PyTorch 2.8 (temporary hack) | |
import os | |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
# Actual demo code | |
import spaces | |
import torch | |
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline | |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel | |
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils.export_utils import export_to_video | |
import gradio as gr | |
import tempfile | |
import numpy as np | |
from PIL import Image | |
import random | |
from optimization import optimize_pipeline_ | |
MODEL_ID = "linoyts/Wan2.2-T2V-A14B-Diffusers-BF16" | |
LANDSCAPE_WIDTH = 832 | |
LANDSCAPE_HEIGHT = 480 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 81 | |
# pipe = WanPipeline.from_pretrained(MODEL_ID, | |
# transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16', | |
# subfolder='transformer', | |
# torch_dtype=torch.bfloat16, | |
# device_map='cuda', | |
# ), | |
# transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16', | |
# subfolder='transformer_2', | |
# torch_dtype=torch.bfloat16, | |
# device_map='cuda', | |
# ), | |
# torch_dtype=torch.bfloat16, | |
# ).to('cuda') | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanPipeline.from_pretrained( | |
MODEL_ID, vae=vae, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
optimize_pipeline_(pipe, | |
prompt='prompt', | |
height=LANDSCAPE_HEIGHT, | |
width=LANDSCAPE_WIDTH, | |
num_frames=MAX_FRAMES_MODEL, | |
) | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" | |
def get_duration( | |
prompt, | |
negative_prompt, | |
num_frames, | |
guidance_scale, | |
steps, | |
seed, | |
randomize_seed, | |
progress, | |
): | |
return steps * 15 | |
def generate_video( | |
prompt, | |
negative_prompt=default_negative_prompt, | |
num_frames = MAX_FRAMES_MODEL, | |
guidance_scale = 3.5, | |
steps = 28, | |
seed = 42, | |
randomize_seed = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
output_frames_list = pipe( | |
prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed | |
with gr.Blocks() as demo: | |
gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA") | |
gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
num_frames_input = gr.Slider(minimum=MIN_FRAMES_MODEL, maximum=MAX_FRAMES_MODEL, step=1, value=MAX_FRAMES_MODEL, label="Frames") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=28, label="Inference Steps") | |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale") | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
ui_inputs = [ | |
prompt_input, | |
negative_prompt_input, num_frames_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
gr.Examples( | |
examples=[ | |
[ | |
"wan_i2v_input.JPG", | |
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.", | |
], | |
], | |
inputs=[ prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(mcp_server=True) |