FastWan2.2_5B_TI2V / app_t2v.py
rahul7star's picture
Update app_t2v.py
4df0ad4 verified
raw
history blame
3.88 kB
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
import torch
import gradio as gr
import tempfile
import random
import numpy as np
import spaces
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
# Constants
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
DEFAULT_NEGATIVE_PROMPT = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
# Setup
dtype = torch.float16 # switched to float16 for stability
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load model
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=dtype)
pipe.to(device)
# Prime the pipeline (warm-up to reduce first-run latency)
_ = pipe(prompt="warmup", negative_prompt=DEFAULT_NEGATIVE_PROMPT, height=512, width=768, num_frames=8, num_inference_steps=2).frames[0]
# GPU duration estimator
@spaces.GPU(duration=200)
def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps, seed, randomize_seed):
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
generator = torch.Generator(device=device).manual_seed(current_seed)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=guidance_scale,
guidance_scale_2=guidance_scale_2,
num_inference_steps=num_steps,
generator=generator,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
export_to_video(output, tmpfile.name, fps=FIXED_FPS)
return tmpfile.name, current_seed
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🎬 Wan2.2 Text-to-Video Generator with HF Spaces GPU")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="Two anthropomorphic cats in comfy boxing gear fight intensely.")
negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT, lines=3)
height = gr.Slider(360, 1024, value=720, step=16, label="Height")
width = gr.Slider(360, 1920, value=1280, step=16, label="Width")
num_frames = gr.Slider(8, 81, value=81, step=1, label="Number of Frames")
num_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps")
guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.5, label="Guidance Scale")
guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Guidance Scale 2")
seed = gr.Slider(0, MAX_SEED, value=42, step=1, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("🎥 Generate Video")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
final_seed_display = gr.Number(label="Used Seed", interactive=False)
generate_button.click(
fn=generate_video,
inputs=[prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps, seed, randomize_seed],
outputs=[video_output, final_seed_display],
)
if __name__ == "__main__":
demo.queue().launch()