FastWan2.2_5B_TI2V / app_t2v.py
rahul7star's picture
Update app_t2v.py
33bdb5b verified
raw
history blame
4.73 kB
# PyTorch nightly for CUDA compatibility
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
# Imports
import spaces
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import random
import numpy as np
# Constants
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
FIXED_FPS = 16
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_HEIGHT = 720
DEFAULT_WIDTH = 1280
MAX_FRAMES = 81
# Prompts
default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
default_negative_prompt = (
"色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,"
"最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,"
"画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
)
# Load pipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32).to(device)
pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=dtype).to(device)
# Optional: warm-up
_ = pipe(
prompt="warmup",
negative_prompt=default_negative_prompt,
height=512,
width=768,
num_frames=8,
num_inference_steps=2,
generator=torch.Generator(device=device).manual_seed(0)
).frames[0]
# Space-aware duration helper
def get_duration(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, steps, seed, randomize_seed, progress):
return int(steps * 15)
@spaces.GPU(duration=get_duration)
def generate_t2v(
prompt,
negative_prompt,
height,
width,
num_frames,
guidance_scale,
guidance_scale_2,
steps,
seed,
randomize_seed,
progress=gr.Progress(track_tqdm=True),
):
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
generator = torch.Generator(device=device).manual_seed(current_seed)
output_frames = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=int(height),
width=int(width),
num_frames=int(num_frames),
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=generator,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
export_to_video(output_frames, tmpfile.name, fps=FIXED_FPS)
return tmpfile.name, current_seed
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🎬 Wan 2.2 T2V: Text-to-Video via Wan-AI")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
height_slider = gr.Slider(360, 1024, step=16, value=DEFAULT_HEIGHT, label="Height")
width_slider = gr.Slider(360, 1920, step=16, value=DEFAULT_WIDTH, label="Width")
frames_slider = gr.Slider(8, MAX_FRAMES, value=MAX_FRAMES, step=1, label="Frames")
with gr.Accordion("Advanced Settings", open=False):
guidance_slider = gr.Slider(0.0, 20.0, step=0.5, value=4.0, label="Guidance Scale")
guidance2_slider = gr.Slider(0.0, 20.0, step=0.5, value=3.0, label="Guidance Scale 2")
steps_slider = gr.Slider(1, 60, step=1, value=40, label="Inference Steps")
seed_slider = gr.Slider(0, MAX_SEED, step=1, value=42, label="Seed", interactive=True)
randomize_seed_check = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("🎥 Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
used_seed = gr.Number(label="Used Seed", interactive=False)
inputs = [
prompt_input, negative_prompt_input,
height_slider, width_slider,
frames_slider,
guidance_slider, guidance2_slider,
steps_slider, seed_slider, randomize_seed_check
]
generate_button.click(fn=generate_t2v, inputs=inputs, outputs=[video_output, used_seed])
if __name__ == "__main__":
demo.queue().launch(mcp_server=True)