Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from PIL import Image | |
import torch | |
# Load model and processor | |
# Cache model to avoid reloading | |
def load_model(): | |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") | |
model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") | |
return processor, model | |
# Extract text from image using SmolVLM | |
def extract_text(image, processor, model): | |
# Preprocess image | |
inputs = processor(images=image, text="What is the text in this image? extract all data in JSON format", return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate(**inputs) | |
result = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return result | |
# Streamlit UI | |
def main(): | |
st.title("๐ผ๏ธ OCR App using SmolVLM") | |
st.write("Upload an image, and I will extract the text for you!") | |
# Load the model and processor | |
processor, model = load_model() | |
# File uploader | |
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Open image | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Extract text | |
with st.spinner("Extracting text..."): | |
extracted_text = extract_text(image, processor, model) | |
# Display result | |
st.subheader("๐ Extracted Text:") | |
st.write(extracted_text) | |
if __name__ == "__main__": | |
main() | |