import streamlit as st from transformers import pipeline # Title of the app st.title("Text Generation with DeepSeek-R1-Distill-Qwen-1.5B") # Load the text-generation pipeline @st.cache_resource # Cache the model to avoid reloading on every interaction def load_model(): return pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B") model = load_model() # Input text box for user input user_input = st.text_area("Enter your prompt:", "Who are you?") # Slider to control the max length of the generated text max_length = st.slider("Max length of generated text", min_value=10, max_value=200, value=50) # Button to generate text if st.button("Generate Text"): if user_input: with st.spinner("Generating text..."): # Generate text using the pipeline messages = [{"role": "user", "content": user_input}] output = model(messages, max_length=max_length, num_return_sequences=1) generated_text = output[0]["generated_text"] # Display the generated text st.success("Generated Text:") st.write(generated_text) else: st.warning("Please enter a prompt!")