Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Title of the app | |
st.title("Text Generation with DeepSeek-R1-Distill-Qwen-1.5B") | |
# Load the text-generation pipeline | |
# Cache the model to avoid reloading on every interaction | |
def load_model(): | |
return pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B") | |
model = load_model() | |
# Input text box for user input | |
user_input = st.text_area("Enter your prompt:", "Who are you?") | |
# Slider to control the max length of the generated text | |
max_length = st.slider("Max length of generated text", min_value=10, max_value=200, value=50) | |
# Button to generate text | |
if st.button("Generate Text"): | |
if user_input: | |
with st.spinner("Generating text..."): | |
# Generate text using the pipeline | |
messages = [{"role": "user", "content": user_input}] | |
output = model(messages, max_length=max_length, num_return_sequences=1) | |
generated_text = output[0]["generated_text"] | |
# Display the generated text | |
st.success("Generated Text:") | |
st.write(generated_text) | |
else: | |
st.warning("Please enter a prompt!") |