import streamlit as st import pandas as pd import matplotlib.pyplot as plt def process_data(df): # Clean and transform data df = df[df['Project Category'].notna()] # Create Week buckets df['Start Date'] = pd.to_datetime(df['Date'].str.split(' to ').str[0], format='%d/%b/%y') df['Week'] = df['Start Date'].apply(lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2) # Aggregate utilization data utilization = df.groupby(['Week', 'Project Category'])['Logged'].sum().unstack(fill_value=0) # Calculate percentages total_hours = utilization.sum(axis=1) utilization_percent = utilization.div(total_hours, axis=0) * 100 # Select relevant categories utilization_percent = utilization_percent[['Fixed Bid Projects - Billable', 'Non-Billable', 'Leaves']].rename(columns={ 'Fixed Bid Projects - Billable': 'Billable', 'Non-Billable': 'Non-Billable', 'Leaves': 'Leaves' }) return utilization_percent def create_utilization_chart(week_data, week_number): fig, ax = plt.subplots() wedges, texts, autotexts = ax.pie( week_data.values, labels=week_data.index, autopct='%1.1f%%', colors=['#4CAF50', '#FFC107', '#9E9E9E'] ) plt.setp(autotexts, size=10, weight="bold", color='white') ax.set_title(f'Week {week_number} Utilization', pad=20) return fig def main(): st.title('QA Team Utilization Dashboard') uploaded_file = st.file_uploader("Upload Tempo Timesheet", type=['xls', 'xlsx']) if uploaded_file: df = pd.read_excel(uploaded_file, sheet_name='Report') utilization_percent = process_data(df) # Page 4 Visualization st.header("Bi-Weekly Utilization Report") col1, col2 = st.columns(2) with col1: week1 = utilization_percent.loc[1] st.pyplot(create_utilization_chart(week1, 1)) with col2: week2 = utilization_percent.loc[2] st.pyplot(create_utilization_chart(week2, 2)) if __name__ == "__main__": main()