import streamlit as st import pandas as pd import matplotlib.pyplot as plt def process_data(df): # Clean data and handle date parsing df = df[df['Project Category'].notna()] # Convert date strings to datetime df['Start Date'] = pd.to_datetime( df['Date'].str.split(' to ').str[0], format='%d/%b/%y', errors='coerce' ) # Filter valid dates and assign weeks df = df.dropna(subset=['Start Date']) df['Week'] = df['Start Date'].apply( lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2 ) # Consolidate billable categories df['Category'] = df['Project Category'].apply( lambda x: 'Billable' if 'Billable' in x else x ) # Aggregate data utilization = df.groupby(['Week', 'Category'])['Logged'].sum().unstack(fill_value=0) # Select relevant categories and calculate percentages categories = ['Billable', 'Non-Billable', 'Leaves'] utilization = utilization.reindex(categories, axis=1, fill_value=0) total_hours = utilization.sum(axis=1) utilization_percent = utilization.div(total_hours, axis=0) * 100 return utilization_percent def create_utilization_chart(week_data, week_number): fig, ax = plt.subplots(figsize=(6, 6)) labels = week_data.index[week_data > 0] sizes = week_data[week_data > 0] wedges, texts, autotexts = ax.pie( sizes, labels=labels, autopct='%1.1f%%', colors=['#4CAF50', '#FFC107', '#9E9E9E'], startangle=90 ) plt.setp(autotexts, size=10, weight="bold", color='white') ax.set_title(f'Week {week_number} Utilization', pad=20) return fig def main(): st.title('QA Team Utilization Dashboard') uploaded_file = st.file_uploader("Upload Tempo Timesheet", type=['xls', 'xlsx']) if uploaded_file: try: df = pd.read_excel(uploaded_file, sheet_name='Report') utilization_percent = process_data(df) # Page 4 Visualization st.header("Bi-Weekly Utilization Report") col1, col2 = st.columns(2) with col1: if 1 in utilization_percent.index: week1 = utilization_percent.loc[1] st.pyplot(create_utilization_chart(week1, 1)) else: st.warning("No data for Week 1") with col2: if 2 in utilization_percent.index: week2 = utilization_percent.loc[2] st.pyplot(create_utilization_chart(week2, 2)) else: st.warning("No data for Week 2") # Show raw data for verification st.subheader("Processed Data Preview") st.dataframe(utilization_percent) except Exception as e: st.error(f"Error processing file: {str(e)}") if __name__ == "__main__": main()