Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,20 +3,36 @@ import pandas as pd
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
def process_data(df):
|
6 |
-
#
|
7 |
-
df
|
8 |
-
df['End Date'] = pd.to_datetime(df['Date'].str.split(' to ').str[1], format='%d/%b/%y')
|
9 |
|
10 |
-
#
|
|
|
11 |
df['Week'] = df['Start Date'].apply(lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2)
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def create_utilization_chart(week_data, week_number):
|
16 |
fig, ax = plt.subplots()
|
17 |
wedges, texts, autotexts = ax.pie(
|
18 |
-
week_data
|
19 |
-
labels=
|
20 |
autopct='%1.1f%%',
|
21 |
colors=['#4CAF50', '#FFC107', '#9E9E9E']
|
22 |
)
|
@@ -24,18 +40,6 @@ def create_utilization_chart(week_data, week_number):
|
|
24 |
ax.set_title(f'Week {week_number} Utilization', pad=20)
|
25 |
return fig
|
26 |
|
27 |
-
def create_non_billable_breakdown(df):
|
28 |
-
non_billable = df[df['Project Category'] == 'Non-Billable']
|
29 |
-
breakdown = non_billable.groupby('Epic')['Logged'].sum().reset_index()
|
30 |
-
breakdown = breakdown[breakdown['Epic'] != 'No Epic']
|
31 |
-
|
32 |
-
fig, ax = plt.subplots()
|
33 |
-
breakdown.plot(kind='bar', x='Epic', y='Logged', ax=ax, legend=False)
|
34 |
-
ax.set_title('Non-Billable Time Breakdown')
|
35 |
-
ax.set_ylabel('Hours')
|
36 |
-
plt.xticks(rotation=45)
|
37 |
-
return fig
|
38 |
-
|
39 |
def main():
|
40 |
st.title('QA Team Utilization Dashboard')
|
41 |
|
@@ -43,37 +47,19 @@ def main():
|
|
43 |
|
44 |
if uploaded_file:
|
45 |
df = pd.read_excel(uploaded_file, sheet_name='Report')
|
46 |
-
|
47 |
|
48 |
# Page 4 Visualization
|
49 |
st.header("Bi-Weekly Utilization Report")
|
50 |
col1, col2 = st.columns(2)
|
51 |
|
52 |
with col1:
|
53 |
-
week1 =
|
54 |
st.pyplot(create_utilization_chart(week1, 1))
|
55 |
|
56 |
with col2:
|
57 |
-
week2 =
|
58 |
st.pyplot(create_utilization_chart(week2, 2))
|
59 |
-
|
60 |
-
# Page 5 Visualization
|
61 |
-
st.header("Non-Billable Time Breakdown")
|
62 |
-
st.pyplot(create_non_billable_breakdown(df))
|
63 |
-
|
64 |
-
# Page 6 Visualization
|
65 |
-
st.header("Solution Accelerators Progress")
|
66 |
-
accelerators = df[(df['Project Category'] == 'Non-Billable') &
|
67 |
-
(df['Epic'] == 'Solution Accelerators')]
|
68 |
-
|
69 |
-
st.dataframe(
|
70 |
-
accelerators[['Project', 'Logged', 'Key']].rename(columns={
|
71 |
-
'Project': 'Initiative',
|
72 |
-
'Logged': 'Hours',
|
73 |
-
'Key': 'Status'
|
74 |
-
}),
|
75 |
-
hide_index=True
|
76 |
-
)
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
main()
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
def process_data(df):
|
6 |
+
# Clean and transform data
|
7 |
+
df = df[df['Project Category'].notna()]
|
|
|
8 |
|
9 |
+
# Create Week buckets
|
10 |
+
df['Start Date'] = pd.to_datetime(df['Date'].str.split(' to ').str[0], format='%d/%b/%y')
|
11 |
df['Week'] = df['Start Date'].apply(lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2)
|
12 |
|
13 |
+
# Aggregate utilization data
|
14 |
+
utilization = df.groupby(['Week', 'Project Category'])['Logged'].sum().unstack(fill_value=0)
|
15 |
+
|
16 |
+
# Calculate percentages
|
17 |
+
total_hours = utilization.sum(axis=1)
|
18 |
+
utilization_percent = utilization.div(total_hours, axis=0) * 100
|
19 |
+
|
20 |
+
# Select relevant categories
|
21 |
+
utilization_percent = utilization_percent[['Fixed Bid Projects - Billable',
|
22 |
+
'Non-Billable',
|
23 |
+
'Leaves']].rename(columns={
|
24 |
+
'Fixed Bid Projects - Billable': 'Billable',
|
25 |
+
'Non-Billable': 'Non-Billable',
|
26 |
+
'Leaves': 'Leaves'
|
27 |
+
})
|
28 |
+
|
29 |
+
return utilization_percent
|
30 |
|
31 |
def create_utilization_chart(week_data, week_number):
|
32 |
fig, ax = plt.subplots()
|
33 |
wedges, texts, autotexts = ax.pie(
|
34 |
+
week_data.values,
|
35 |
+
labels=week_data.index,
|
36 |
autopct='%1.1f%%',
|
37 |
colors=['#4CAF50', '#FFC107', '#9E9E9E']
|
38 |
)
|
|
|
40 |
ax.set_title(f'Week {week_number} Utilization', pad=20)
|
41 |
return fig
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def main():
|
44 |
st.title('QA Team Utilization Dashboard')
|
45 |
|
|
|
47 |
|
48 |
if uploaded_file:
|
49 |
df = pd.read_excel(uploaded_file, sheet_name='Report')
|
50 |
+
utilization_percent = process_data(df)
|
51 |
|
52 |
# Page 4 Visualization
|
53 |
st.header("Bi-Weekly Utilization Report")
|
54 |
col1, col2 = st.columns(2)
|
55 |
|
56 |
with col1:
|
57 |
+
week1 = utilization_percent.loc[1]
|
58 |
st.pyplot(create_utilization_chart(week1, 1))
|
59 |
|
60 |
with col2:
|
61 |
+
week2 = utilization_percent.loc[2]
|
62 |
st.pyplot(create_utilization_chart(week2, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
main()
|