Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,20 +3,36 @@ import pandas as pd
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
def process_data(df):
|
| 6 |
-
#
|
| 7 |
-
df
|
| 8 |
-
df['End Date'] = pd.to_datetime(df['Date'].str.split(' to ').str[1], format='%d/%b/%y')
|
| 9 |
|
| 10 |
-
#
|
|
|
|
| 11 |
df['Week'] = df['Start Date'].apply(lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2)
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def create_utilization_chart(week_data, week_number):
|
| 16 |
fig, ax = plt.subplots()
|
| 17 |
wedges, texts, autotexts = ax.pie(
|
| 18 |
-
week_data
|
| 19 |
-
labels=
|
| 20 |
autopct='%1.1f%%',
|
| 21 |
colors=['#4CAF50', '#FFC107', '#9E9E9E']
|
| 22 |
)
|
|
@@ -24,18 +40,6 @@ def create_utilization_chart(week_data, week_number):
|
|
| 24 |
ax.set_title(f'Week {week_number} Utilization', pad=20)
|
| 25 |
return fig
|
| 26 |
|
| 27 |
-
def create_non_billable_breakdown(df):
|
| 28 |
-
non_billable = df[df['Project Category'] == 'Non-Billable']
|
| 29 |
-
breakdown = non_billable.groupby('Epic')['Logged'].sum().reset_index()
|
| 30 |
-
breakdown = breakdown[breakdown['Epic'] != 'No Epic']
|
| 31 |
-
|
| 32 |
-
fig, ax = plt.subplots()
|
| 33 |
-
breakdown.plot(kind='bar', x='Epic', y='Logged', ax=ax, legend=False)
|
| 34 |
-
ax.set_title('Non-Billable Time Breakdown')
|
| 35 |
-
ax.set_ylabel('Hours')
|
| 36 |
-
plt.xticks(rotation=45)
|
| 37 |
-
return fig
|
| 38 |
-
|
| 39 |
def main():
|
| 40 |
st.title('QA Team Utilization Dashboard')
|
| 41 |
|
|
@@ -43,37 +47,19 @@ def main():
|
|
| 43 |
|
| 44 |
if uploaded_file:
|
| 45 |
df = pd.read_excel(uploaded_file, sheet_name='Report')
|
| 46 |
-
|
| 47 |
|
| 48 |
# Page 4 Visualization
|
| 49 |
st.header("Bi-Weekly Utilization Report")
|
| 50 |
col1, col2 = st.columns(2)
|
| 51 |
|
| 52 |
with col1:
|
| 53 |
-
week1 =
|
| 54 |
st.pyplot(create_utilization_chart(week1, 1))
|
| 55 |
|
| 56 |
with col2:
|
| 57 |
-
week2 =
|
| 58 |
st.pyplot(create_utilization_chart(week2, 2))
|
| 59 |
-
|
| 60 |
-
# Page 5 Visualization
|
| 61 |
-
st.header("Non-Billable Time Breakdown")
|
| 62 |
-
st.pyplot(create_non_billable_breakdown(df))
|
| 63 |
-
|
| 64 |
-
# Page 6 Visualization
|
| 65 |
-
st.header("Solution Accelerators Progress")
|
| 66 |
-
accelerators = df[(df['Project Category'] == 'Non-Billable') &
|
| 67 |
-
(df['Epic'] == 'Solution Accelerators')]
|
| 68 |
-
|
| 69 |
-
st.dataframe(
|
| 70 |
-
accelerators[['Project', 'Logged', 'Key']].rename(columns={
|
| 71 |
-
'Project': 'Initiative',
|
| 72 |
-
'Logged': 'Hours',
|
| 73 |
-
'Key': 'Status'
|
| 74 |
-
}),
|
| 75 |
-
hide_index=True
|
| 76 |
-
)
|
| 77 |
|
| 78 |
if __name__ == "__main__":
|
| 79 |
main()
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
def process_data(df):
|
| 6 |
+
# Clean and transform data
|
| 7 |
+
df = df[df['Project Category'].notna()]
|
|
|
|
| 8 |
|
| 9 |
+
# Create Week buckets
|
| 10 |
+
df['Start Date'] = pd.to_datetime(df['Date'].str.split(' to ').str[0], format='%d/%b/%y')
|
| 11 |
df['Week'] = df['Start Date'].apply(lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2)
|
| 12 |
|
| 13 |
+
# Aggregate utilization data
|
| 14 |
+
utilization = df.groupby(['Week', 'Project Category'])['Logged'].sum().unstack(fill_value=0)
|
| 15 |
+
|
| 16 |
+
# Calculate percentages
|
| 17 |
+
total_hours = utilization.sum(axis=1)
|
| 18 |
+
utilization_percent = utilization.div(total_hours, axis=0) * 100
|
| 19 |
+
|
| 20 |
+
# Select relevant categories
|
| 21 |
+
utilization_percent = utilization_percent[['Fixed Bid Projects - Billable',
|
| 22 |
+
'Non-Billable',
|
| 23 |
+
'Leaves']].rename(columns={
|
| 24 |
+
'Fixed Bid Projects - Billable': 'Billable',
|
| 25 |
+
'Non-Billable': 'Non-Billable',
|
| 26 |
+
'Leaves': 'Leaves'
|
| 27 |
+
})
|
| 28 |
+
|
| 29 |
+
return utilization_percent
|
| 30 |
|
| 31 |
def create_utilization_chart(week_data, week_number):
|
| 32 |
fig, ax = plt.subplots()
|
| 33 |
wedges, texts, autotexts = ax.pie(
|
| 34 |
+
week_data.values,
|
| 35 |
+
labels=week_data.index,
|
| 36 |
autopct='%1.1f%%',
|
| 37 |
colors=['#4CAF50', '#FFC107', '#9E9E9E']
|
| 38 |
)
|
|
|
|
| 40 |
ax.set_title(f'Week {week_number} Utilization', pad=20)
|
| 41 |
return fig
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def main():
|
| 44 |
st.title('QA Team Utilization Dashboard')
|
| 45 |
|
|
|
|
| 47 |
|
| 48 |
if uploaded_file:
|
| 49 |
df = pd.read_excel(uploaded_file, sheet_name='Report')
|
| 50 |
+
utilization_percent = process_data(df)
|
| 51 |
|
| 52 |
# Page 4 Visualization
|
| 53 |
st.header("Bi-Weekly Utilization Report")
|
| 54 |
col1, col2 = st.columns(2)
|
| 55 |
|
| 56 |
with col1:
|
| 57 |
+
week1 = utilization_percent.loc[1]
|
| 58 |
st.pyplot(create_utilization_chart(week1, 1))
|
| 59 |
|
| 60 |
with col2:
|
| 61 |
+
week2 = utilization_percent.loc[2]
|
| 62 |
st.pyplot(create_utilization_chart(week2, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|
| 65 |
main()
|