Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,89 +3,77 @@ import pandas as pd
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
def process_data(df):
|
6 |
-
# Clean data and
|
7 |
-
df = df[
|
8 |
|
9 |
-
#
|
10 |
-
df['Start Date'] = pd.to_datetime(
|
11 |
-
df['Date'].str.split(' to ').str[0],
|
12 |
-
format='%d/%b/%y',
|
13 |
-
errors='coerce'
|
14 |
-
)
|
15 |
-
|
16 |
-
# Filter valid dates and assign weeks
|
17 |
-
df = df.dropna(subset=['Start Date'])
|
18 |
-
df['Week'] = df['Start Date'].apply(
|
19 |
-
lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2
|
20 |
-
)
|
21 |
-
|
22 |
-
# Consolidate billable categories
|
23 |
df['Category'] = df['Project Category'].apply(
|
24 |
-
lambda x: 'Billable' if 'Billable' in x else x
|
25 |
)
|
26 |
|
27 |
# Aggregate data
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
categories = ['Billable', 'Non-Billable', 'Leaves']
|
32 |
-
utilization = utilization.reindex(categories, axis=1, fill_value=0)
|
33 |
-
total_hours = utilization.sum(axis=1)
|
34 |
-
utilization_percent = utilization.div(total_hours, axis=0) * 100
|
35 |
-
|
36 |
-
return utilization_percent
|
37 |
|
38 |
-
def
|
39 |
fig, ax = plt.subplots(figsize=(6, 6))
|
40 |
-
labels = week_data.index[week_data > 0]
|
41 |
-
sizes = week_data[week_data > 0]
|
42 |
-
|
43 |
wedges, texts, autotexts = ax.pie(
|
44 |
-
|
45 |
-
labels=
|
46 |
autopct='%1.1f%%',
|
47 |
colors=['#4CAF50', '#FFC107', '#9E9E9E'],
|
48 |
startangle=90
|
49 |
)
|
50 |
-
|
51 |
plt.setp(autotexts, size=10, weight="bold", color='white')
|
52 |
-
ax.set_title(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
return fig
|
54 |
|
55 |
def main():
|
56 |
-
st.title('QA
|
57 |
|
58 |
-
uploaded_file = st.file_uploader("Upload
|
59 |
|
60 |
if uploaded_file:
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
if 1 in utilization_percent.index:
|
71 |
-
week1 = utilization_percent.loc[1]
|
72 |
-
st.pyplot(create_utilization_chart(week1, 1))
|
73 |
-
else:
|
74 |
-
st.warning("No data for Week 1")
|
75 |
-
|
76 |
-
with col2:
|
77 |
-
if 2 in utilization_percent.index:
|
78 |
-
week2 = utilization_percent.loc[2]
|
79 |
-
st.pyplot(create_utilization_chart(week2, 2))
|
80 |
-
else:
|
81 |
-
st.warning("No data for Week 2")
|
82 |
-
|
83 |
-
# Show raw data for verification
|
84 |
-
st.subheader("Processed Data Preview")
|
85 |
-
st.dataframe(utilization_percent)
|
86 |
|
87 |
-
|
88 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
main()
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
|
5 |
def process_data(df):
|
6 |
+
# Clean data and consolidate categories
|
7 |
+
df = df[['Project Category', 'Logged']].copy()
|
8 |
|
9 |
+
# Map to main categories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
df['Category'] = df['Project Category'].apply(
|
11 |
+
lambda x: 'Billable' if 'Billable' in x else x.strip()
|
12 |
)
|
13 |
|
14 |
# Aggregate data
|
15 |
+
summary = df.groupby('Category')['Logged'].sum().reset_index()
|
16 |
+
total = summary['Logged'].sum()
|
17 |
+
summary['Percentage'] = (summary['Logged'] / total * 100).round(1)
|
18 |
|
19 |
+
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def create_pie_chart(data):
|
22 |
fig, ax = plt.subplots(figsize=(6, 6))
|
|
|
|
|
|
|
23 |
wedges, texts, autotexts = ax.pie(
|
24 |
+
data['Logged'],
|
25 |
+
labels=data['Category'],
|
26 |
autopct='%1.1f%%',
|
27 |
colors=['#4CAF50', '#FFC107', '#9E9E9E'],
|
28 |
startangle=90
|
29 |
)
|
|
|
30 |
plt.setp(autotexts, size=10, weight="bold", color='white')
|
31 |
+
ax.set_title('Overall Utilization', pad=20)
|
32 |
+
return fig
|
33 |
+
|
34 |
+
def create_bar_chart(data):
|
35 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
36 |
+
data[data['Category'] == 'Non-Billable'].plot(
|
37 |
+
kind='bar',
|
38 |
+
x='Project Category',
|
39 |
+
y='Logged',
|
40 |
+
ax=ax,
|
41 |
+
legend=False
|
42 |
+
)
|
43 |
+
ax.set_title('Non-Billable Details')
|
44 |
+
ax.set_ylabel('Hours')
|
45 |
+
plt.xticks(rotation=45)
|
46 |
return fig
|
47 |
|
48 |
def main():
|
49 |
+
st.title('QA Utilization Dashboard')
|
50 |
|
51 |
+
uploaded_file = st.file_uploader("Upload Timesheet", type=['xls', 'xlsx'])
|
52 |
|
53 |
if uploaded_file:
|
54 |
+
df = pd.read_excel(uploaded_file, sheet_name='Report')
|
55 |
+
processed_data = process_data(df)
|
56 |
+
|
57 |
+
# Show main visualization
|
58 |
+
st.header("Overall Utilization")
|
59 |
+
col1, col2 = st.columns([2, 1])
|
60 |
+
|
61 |
+
with col1:
|
62 |
+
st.pyplot(create_pie_chart(processed_data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
with col2:
|
65 |
+
st.dataframe(
|
66 |
+
processed_data[['Category', 'Logged', 'Percentage']],
|
67 |
+
hide_index=True,
|
68 |
+
column_config={
|
69 |
+
'Logged': 'Hours',
|
70 |
+
'Percentage': st.column_config.NumberColumn(format="%.1f%%")
|
71 |
+
}
|
72 |
+
)
|
73 |
+
|
74 |
+
# Show non-billable details
|
75 |
+
st.header("Non-Billable Breakdown")
|
76 |
+
st.pyplot(create_bar_chart(df))
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
main()
|