akshay-js
commited on
Commit
Β·
0077bbf
1
Parent(s):
3ec9829
Added application
Browse files- README.md +26 -6
- app.py +71 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,12 +1,32 @@
|
|
1 |
---
|
2 |
-
title: Meeting
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Meeting Minutes Generator and Question Answer Application
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
---
|
10 |
|
11 |
+
## Overview
|
12 |
+
|
13 |
+
This application takes an MP3 file of a meeting recording in English, converts it into text, generates meeting minutes in a specified format, and answers questions based on the minutes using OpenAI APIs, ChatGPT, and the LangChain framework.
|
14 |
+
|
15 |
+
## Features
|
16 |
+
|
17 |
+
- **Transcription**: Converts audio recordings (MP3) to text.
|
18 |
+
- **Meeting Minutes Generation**: Summarizes the transcription into meeting minutes.
|
19 |
+
- **Question and Answer**: Allows users to ask questions based on the meeting minutes.
|
20 |
+
|
21 |
+
## Prerequisites
|
22 |
+
|
23 |
+
Before you begin, ensure you have met the following requirements:
|
24 |
+
|
25 |
+
- Python 3.7 or higher
|
26 |
+
- An OpenAI API key
|
27 |
+
- The following Python libraries:
|
28 |
+
- `openai`
|
29 |
+
- `transformers`
|
30 |
+
- `langchain`
|
31 |
+
- `pydub`
|
32 |
+
- `whisper`
|
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torchaudio
|
4 |
+
import time
|
5 |
+
|
6 |
+
# Load Whisper ASR model
|
7 |
+
transcriber = pipeline(model="openai/whisper-base")
|
8 |
+
|
9 |
+
# Load summarization model
|
10 |
+
summarization_model = pipeline("summarization")
|
11 |
+
|
12 |
+
# Load question-answering model
|
13 |
+
model_name = "deepset/roberta-base-squad2"
|
14 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
15 |
+
|
16 |
+
def translate_audio(audio):
|
17 |
+
# Step 1: Transcribe audio to text
|
18 |
+
transcription = transcriber(audio)
|
19 |
+
print('transcription', transcription)
|
20 |
+
|
21 |
+
# Step 2: Translate text to Hindi
|
22 |
+
summary = summarization_model(transcription['text'])
|
23 |
+
print('summary', summary)
|
24 |
+
|
25 |
+
return transcription['text'], summary[0]['summary_text']
|
26 |
+
|
27 |
+
def answer_question(context, question):
|
28 |
+
QA_input = {
|
29 |
+
'question': question,
|
30 |
+
'context': context
|
31 |
+
}
|
32 |
+
print('----QA_input----', QA_input)
|
33 |
+
return nlp(QA_input)['answer']
|
34 |
+
|
35 |
+
# Create Gradio interface
|
36 |
+
with gr.Blocks() as iface:
|
37 |
+
gr.Markdown("# Audio Translator, Summarizer, and QA System")
|
38 |
+
|
39 |
+
with gr.Row():
|
40 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
41 |
+
transcription_output = gr.Textbox(
|
42 |
+
label="Transcribed Text",
|
43 |
+
info="Initial text")
|
44 |
+
translation_output = gr.Textbox(
|
45 |
+
label="Summary",
|
46 |
+
info="Meeting minute")
|
47 |
+
|
48 |
+
translate_button = gr.Button("Translate Audio")
|
49 |
+
|
50 |
+
translate_button.click(
|
51 |
+
translate_audio,
|
52 |
+
inputs=[audio_input],
|
53 |
+
outputs=[transcription_output, translation_output]
|
54 |
+
)
|
55 |
+
|
56 |
+
def respond(message, chat_history, context):
|
57 |
+
bot_message = answer_question(context, message)
|
58 |
+
print('----bot_message---', bot_message)
|
59 |
+
chat_history.append((message, bot_message))
|
60 |
+
time.sleep(2)
|
61 |
+
return "", chat_history
|
62 |
+
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
chatbot = gr.Chatbot()
|
65 |
+
msg = gr.Textbox()
|
66 |
+
clear = gr.ClearButton([msg, chatbot])
|
67 |
+
|
68 |
+
msg.submit(respond, [msg, chatbot, transcription_output], [msg, chatbot])
|
69 |
+
|
70 |
+
# Launch the app
|
71 |
+
iface.launch(share=True) # 'share=True' to get a public link
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torchaudio
|
3 |
+
gradio
|
4 |
+
sentencepiece
|