Spaces:
Paused
Paused
Upload llllmmm.ipynb
Browse files- llllmmm.ipynb +144 -0
llllmmm.ipynb
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"id": "initial_id",
|
6 |
+
"metadata": {
|
7 |
+
"ExecuteTime": {
|
8 |
+
"end_time": "2024-07-01T11:08:00.253851Z",
|
9 |
+
"start_time": "2024-07-01T11:08:00.067738Z"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"source": [
|
13 |
+
"import torch\n",
|
14 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM,TrainingArguments\n",
|
15 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
|
16 |
+
],
|
17 |
+
"outputs": [],
|
18 |
+
"execution_count": 2
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"id": "df5ce2489db64f8d",
|
23 |
+
"metadata": {
|
24 |
+
"ExecuteTime": {
|
25 |
+
"end_time": "2024-07-01T11:08:15.731889Z",
|
26 |
+
"start_time": "2024-07-01T11:08:03.640950Z"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"source": [
|
30 |
+
"model = AutoModelForCausalLM.from_pretrained(\"meta-llama/Llama-2-7b-hf\", device_map=\"auto\", torch_dtype = \"auto\",cache_dir=\"D:/a\" )\n",
|
31 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Llama-2-7b-hf\", cache_dir=\"D:/a\", use_fast=True)"
|
32 |
+
],
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"data": {
|
36 |
+
"text/plain": [
|
37 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
38 |
+
],
|
39 |
+
"application/vnd.jupyter.widget-view+json": {
|
40 |
+
"version_major": 2,
|
41 |
+
"version_minor": 0,
|
42 |
+
"model_id": "475b288bdaa84157adbb7b99f89c7e5c"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"metadata": {},
|
46 |
+
"output_type": "display_data"
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"name": "stderr",
|
50 |
+
"output_type": "stream",
|
51 |
+
"text": [
|
52 |
+
"WARNING:root:Some parameters are on the meta device device because they were offloaded to the disk.\n"
|
53 |
+
]
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"execution_count": 3
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"id": "7ce8ee88e61ac738",
|
61 |
+
"metadata": {
|
62 |
+
"ExecuteTime": {
|
63 |
+
"end_time": "2024-07-01T11:08:50.346303Z",
|
64 |
+
"start_time": "2024-07-01T11:08:50.336252Z"
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"source": [
|
68 |
+
"def get_llama2_response(prompt, max_new_tokens=50):\n",
|
69 |
+
" inputs = tokenizer(prompt, return_tensors=\"pt\").to(device)\n",
|
70 |
+
" outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature= 0.00001)\n",
|
71 |
+
" response = tokenizer.decode(outputs(0), skip_special_tokens=True)\n",
|
72 |
+
" return response"
|
73 |
+
],
|
74 |
+
"outputs": [],
|
75 |
+
"execution_count": 7
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"metadata": {},
|
79 |
+
"cell_type": "code",
|
80 |
+
"outputs": [
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"text/plain": [
|
84 |
+
"'Q:how to find the llama A:The llama is a South American camelid, a domesticated species of the genus Lama. It is used for'"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
"execution_count": 9,
|
88 |
+
"metadata": {},
|
89 |
+
"output_type": "execute_result"
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"execution_count": 9,
|
93 |
+
"source": [
|
94 |
+
"prompt = \"Q:how to find the llama A:\"\n",
|
95 |
+
"get_llama2_response(prompt, max_new_tokens=25)"
|
96 |
+
],
|
97 |
+
"id": "a6ad65ea85069793"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"metadata": {
|
101 |
+
"jupyter": {
|
102 |
+
"is_executing": true
|
103 |
+
}
|
104 |
+
},
|
105 |
+
"cell_type": "code",
|
106 |
+
"source": [
|
107 |
+
"prompt = \"Q:SQL query to extract data from Employee Table A:\"\n",
|
108 |
+
"get_llama2_response(prompt, max_new_tokens=25)"
|
109 |
+
],
|
110 |
+
"id": "de9f0fcc6dc9fa82",
|
111 |
+
"outputs": [],
|
112 |
+
"execution_count": null
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"metadata": {},
|
116 |
+
"cell_type": "code",
|
117 |
+
"source": "",
|
118 |
+
"id": "e7f9c4411f2d8b57",
|
119 |
+
"outputs": [],
|
120 |
+
"execution_count": null
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"metadata": {
|
124 |
+
"kernelspec": {
|
125 |
+
"display_name": "Python 3 (ipykernel)",
|
126 |
+
"language": "python",
|
127 |
+
"name": "python3"
|
128 |
+
},
|
129 |
+
"language_info": {
|
130 |
+
"codemirror_mode": {
|
131 |
+
"name": "ipython",
|
132 |
+
"version": 3
|
133 |
+
},
|
134 |
+
"file_extension": ".py",
|
135 |
+
"mimetype": "text/x-python",
|
136 |
+
"name": "python",
|
137 |
+
"nbconvert_exporter": "python",
|
138 |
+
"pygments_lexer": "ipython3",
|
139 |
+
"version": "3.12.4"
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"nbformat": 4,
|
143 |
+
"nbformat_minor": 5
|
144 |
+
}
|