from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments from huggingface_hub import login token1="hf_" token2="rPlNHzkJScHYmtGSaQPcaoKcjJGYQEpjLu" login(token=token1+token2) # Load pre-trained model and tokenizer (replace with desired model name) model_name = "meta-llama/Llama-2-7b-chat-hf" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define training arguments (hyperparameters) training_args = TrainingArguments( output_dir='output', # Output directory for checkpoints etc. per_device_train_batch_size=8, # Adjust based on your hardware save_steps=10_000, num_train_epochs=3, # Adjust training epochs as needed ) # Load your training and validation data (specific to your chosen library) train_dataset = "data/train.csv" val_dataset = "data/val.csv" # Create a Trainer object for fine-tuning trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, # Replace with your training data loader eval_dataset=val_dataset, # Replace with your validation data loader ) # Start fine-tuning trainer.train()