Akshat1000 commited on
Commit
340627f
·
verified ·
1 Parent(s): 79acee0

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +5 -1
  2. getans.py +14 -0
  3. requirements.txt +4 -2
app.py CHANGED
@@ -1,21 +1,25 @@
1
  from flask import Flask, render_template, request, jsonify
 
2
 
3
  app = Flask(__name__)
4
 
5
  # Store chat history
6
  chat_history = []
7
 
 
8
  @app.route('/')
9
  def index():
10
  return render_template('index.html', chat_history=chat_history)
11
 
 
12
  @app.route('/send_message', methods=['POST'])
13
  def send_message():
14
  user_message = request.form['message']
15
  # Here you can process the user message and generate a response
16
- bot_response = f"Echo: {user_message}"
17
  chat_history.append({'user': user_message, 'bot': bot_response})
18
  return jsonify(chat_history=chat_history)
19
 
 
20
  if __name__ == '__main__':
21
  app.run(debug=True)
 
1
  from flask import Flask, render_template, request, jsonify
2
+ from getans import get_response
3
 
4
  app = Flask(__name__)
5
 
6
  # Store chat history
7
  chat_history = []
8
 
9
+
10
  @app.route('/')
11
  def index():
12
  return render_template('index.html', chat_history=chat_history)
13
 
14
+
15
  @app.route('/send_message', methods=['POST'])
16
  def send_message():
17
  user_message = request.form['message']
18
  # Here you can process the user message and generate a response
19
+ bot_response = get_response(user_message, max_new_tokens=100)
20
  chat_history.append({'user': user_message, 'bot': bot_response})
21
  return jsonify(chat_history=chat_history)
22
 
23
+
24
  if __name__ == '__main__':
25
  app.run(debug=True)
getans.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
5
+
6
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
7
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
8
+
9
+
10
+ def get_response(prompt, max_new_tokens=50):
11
+ inputs = tokenizer(prompt, return_tensors="pt")
12
+ outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature=0.0001, do_sample=True)
13
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Use indexing instead of calling
14
+ return response
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
- Flask~=3.0.3
2
- gunicorn~=22.0.0
 
 
 
1
+ Flask~=3.0.3
2
+ gunicorn~=22.0.0
3
+ torch
4
+ transformers