Zing / finetuning /finetuning.py
Akshat1000's picture
Upload 11 files
8df3da1 verified
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from huggingface_hub import login
token1="hf_"
token2="rPlNHzkJScHYmtGSaQPcaoKcjJGYQEpjLu"
login(token=token1+token2)
# Load pre-trained model and tokenizer (replace with desired model name)
model_name = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define training arguments (hyperparameters)
training_args = TrainingArguments(
output_dir='output', # Output directory for checkpoints etc.
per_device_train_batch_size=8, # Adjust based on your hardware
save_steps=10_000,
num_train_epochs=3, # Adjust training epochs as needed
)
# Load your training and validation data (specific to your chosen library)
train_dataset = "data/train.csv"
val_dataset = "data/val.csv"
# Create a Trainer object for fine-tuning
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset, # Replace with your training data loader
eval_dataset=val_dataset, # Replace with your validation data loader
)
# Start fine-tuning
trainer.train()