from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Vardan-verma/Question_Answering_model_finetuned_on_bert") model = AutoModelForQuestionAnswering.from_pretrained("Vardan-verma/Question_Answering_model_finetuned_on_bert") def get_answer(question, context): inputs = tokenizer(question, context, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) start_idx = torch.argmax(outputs.start_logits) end_idx = torch.argmax(outputs.end_logits) + 1 answer_tokens = inputs["input_ids"][0][start_idx:end_idx] answer = tokenizer.decode(answer_tokens, skip_special_tokens=True) return answer