Spaces:
Sleeping
Sleeping
Update summarize.py
Browse files- summarize.py +20 -59
summarize.py
CHANGED
@@ -1,59 +1,20 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
return
|
21 |
-
|
22 |
-
# Split text into chunks of approx. 512 tokens (by words)
|
23 |
-
def split_text_into_chunks(text, max_tokens=500):
|
24 |
-
words = text.split()
|
25 |
-
chunks = []
|
26 |
-
i = 0
|
27 |
-
while i < len(words):
|
28 |
-
chunk = words[i:i+max_tokens]
|
29 |
-
chunks.append(" ".join(chunk))
|
30 |
-
i += max_tokens
|
31 |
-
return chunks
|
32 |
-
|
33 |
-
# Summarize a chunk
|
34 |
-
def summarize_chunk(text_chunk):
|
35 |
-
input_text = "summarize: " + text_chunk
|
36 |
-
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
37 |
-
summary_ids = model.generate(
|
38 |
-
inputs["input_ids"],
|
39 |
-
max_length=512,
|
40 |
-
min_length=250,
|
41 |
-
length_penalty=2.0,
|
42 |
-
num_beams=4,
|
43 |
-
early_stopping=True
|
44 |
-
)
|
45 |
-
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
46 |
-
|
47 |
-
# Summarize the entire document using chunks
|
48 |
-
def summarize_text(full_text):
|
49 |
-
chunks = split_text_into_chunks(full_text)
|
50 |
-
summaries = [summarize_chunk(chunk) for chunk in chunks]
|
51 |
-
full_summary = " ".join(summaries)
|
52 |
-
return full_summary
|
53 |
-
|
54 |
-
# Testable main flow
|
55 |
-
if __name__ == "__main__":
|
56 |
-
pdf_path = "C:/Users/HP/Downloads/study/cns/Unit 1.pdf"
|
57 |
-
raw_text = extract_text_from_pdf(pdf_path)
|
58 |
-
summary = summarize_text(raw_text)
|
59 |
-
print("Summary:\n", summary)
|
|
|
1 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
|
4 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
5 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
6 |
+
|
7 |
+
def summarize_text(text, max_chunk_length=512):
|
8 |
+
text = text.replace("\n", " ")
|
9 |
+
chunks = [text[i:i+max_chunk_length] for i in range(0, len(text), max_chunk_length)]
|
10 |
+
|
11 |
+
summarized_chunks = []
|
12 |
+
|
13 |
+
for chunk in chunks:
|
14 |
+
input_text = "summarize: " + chunk
|
15 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
16 |
+
summary_ids = model.generate(inputs, max_length=150, min_length=40, num_beams=4, length_penalty=2.0, early_stopping=True)
|
17 |
+
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
18 |
+
summarized_chunks.append(output)
|
19 |
+
|
20 |
+
return " ".join(summarized_chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|