|
import argparse |
|
import json |
|
import os |
|
import time |
|
import threading |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from datetime import datetime |
|
from pathlib import Path |
|
from typing import List, Optional |
|
|
|
import datasets |
|
import pandas as pd |
|
from dotenv import load_dotenv |
|
from huggingface_hub import login |
|
import gradio as gr |
|
|
|
from scripts.reformulator import prepare_response |
|
from scripts.run_agents import ( |
|
get_single_file_description, |
|
get_zip_description, |
|
) |
|
from scripts.text_inspector_tool import TextInspectorTool |
|
from scripts.text_web_browser import ( |
|
ArchiveSearchTool, |
|
FinderTool, |
|
FindNextTool, |
|
PageDownTool, |
|
PageUpTool, |
|
SimpleTextBrowser, |
|
VisitTool, |
|
) |
|
from scripts.visual_qa import visualizer |
|
from tqdm import tqdm |
|
|
|
from smolagents import ( |
|
CodeAgent, |
|
HfApiModel, |
|
LiteLLMModel, |
|
Model, |
|
ToolCallingAgent, |
|
DuckDuckGoSearchTool |
|
) |
|
from smolagents.agent_types import AgentText, AgentImage, AgentAudio |
|
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types |
|
|
|
from smolagents import Tool |
|
|
|
|
|
class GoogleSearchTool(Tool): |
|
name = "web_search" |
|
description = """Performs a google web search for your query then returns a string of the top search results.""" |
|
inputs = { |
|
"query": {"type": "string", "description": "The search query to perform."}, |
|
"filter_year": { |
|
"type": "integer", |
|
"description": "Optionally restrict results to a certain year", |
|
"nullable": True, |
|
}, |
|
} |
|
output_type = "string" |
|
|
|
def __init__(self): |
|
super().__init__(self) |
|
import os |
|
|
|
self.serpapi_key = os.getenv("SERPER_API_KEY") |
|
|
|
def forward(self, query: str, filter_year: Optional[int] = None) -> str: |
|
import requests |
|
|
|
if self.serpapi_key is None: |
|
raise ValueError("Missing SerpAPI key. Make sure you have 'SERPER_API_KEY' in your env variables.") |
|
|
|
params = { |
|
"engine": "google", |
|
"q": query, |
|
"api_key": self.serpapi_key, |
|
"google_domain": "google.com", |
|
} |
|
|
|
headers = { |
|
'X-API-KEY': self.serpapi_key, |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
if filter_year is not None: |
|
params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}" |
|
|
|
response = requests.request("POST", "https://google.serper.dev/search", headers=headers, data=json.dumps(params)) |
|
|
|
|
|
if response.status_code == 200: |
|
results = response.json() |
|
else: |
|
raise ValueError(response.json()) |
|
|
|
if "organic" not in results.keys(): |
|
print("REZZZ", results.keys()) |
|
if filter_year is not None: |
|
raise Exception( |
|
f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year." |
|
) |
|
else: |
|
raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.") |
|
if len(results["organic"]) == 0: |
|
year_filter_message = f" with filter year={filter_year}" if filter_year is not None else "" |
|
return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter." |
|
|
|
web_snippets = [] |
|
if "organic" in results: |
|
for idx, page in enumerate(results["organic"]): |
|
date_published = "" |
|
if "date" in page: |
|
date_published = "\nDate published: " + page["date"] |
|
|
|
source = "" |
|
if "source" in page: |
|
source = "\nSource: " + page["source"] |
|
|
|
snippet = "" |
|
if "snippet" in page: |
|
snippet = "\n" + page["snippet"] |
|
|
|
redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}" |
|
|
|
redacted_version = redacted_version.replace("Your browser can't play this video.", "") |
|
web_snippets.append(redacted_version) |
|
|
|
return "## Search Results\n" + "\n\n".join(web_snippets) |
|
|
|
|
|
|
|
|
|
|
|
AUTHORIZED_IMPORTS = [ |
|
"requests", |
|
"zipfile", |
|
"os", |
|
"pandas", |
|
"numpy", |
|
"sympy", |
|
"json", |
|
"bs4", |
|
"pubchempy", |
|
"xml", |
|
"yahoo_finance", |
|
"Bio", |
|
"sklearn", |
|
"scipy", |
|
"pydub", |
|
"io", |
|
"PIL", |
|
"chess", |
|
"PyPDF2", |
|
"pptx", |
|
"torch", |
|
"datetime", |
|
"fractions", |
|
"csv", |
|
] |
|
load_dotenv(override=True) |
|
|
|
|
|
append_answer_lock = threading.Lock() |
|
|
|
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} |
|
|
|
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" |
|
|
|
BROWSER_CONFIG = { |
|
"viewport_size": 1024 * 5, |
|
"downloads_folder": "downloads_folder", |
|
"request_kwargs": { |
|
"headers": {"User-Agent": user_agent}, |
|
"timeout": 300, |
|
}, |
|
"serpapi_key": os.getenv("SERPAPI_API_KEY"), |
|
} |
|
|
|
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) |
|
|
|
model = LiteLLMModel( |
|
|
|
"llama-3.3-70b-versatile", |
|
api_base="https://api.groq.com/openai/v1", |
|
custom_role_conversions=custom_role_conversions, |
|
max_tokens=6000, |
|
api_key=os.getenv("OPENAI_API_KEY") |
|
) |
|
model._flatten_messages_as_text = True |
|
|
|
|
|
text_limit = 5000 |
|
ti_tool = TextInspectorTool(model, text_limit) |
|
|
|
browser = SimpleTextBrowser(**BROWSER_CONFIG) |
|
|
|
WEB_TOOLS = [ |
|
DuckDuckGoSearchTool(), |
|
|
|
VisitTool(browser), |
|
PageUpTool(browser), |
|
PageDownTool(browser), |
|
FinderTool(browser), |
|
FindNextTool(browser), |
|
ArchiveSearchTool(browser), |
|
TextInspectorTool(model, text_limit), |
|
] |
|
|
|
|
|
def create_agent(): |
|
"""Creates a fresh agent instance for each session""" |
|
return CodeAgent( |
|
model=model, |
|
tools=[visualizer] + WEB_TOOLS, |
|
max_steps=10, |
|
verbosity_level=1, |
|
additional_authorized_imports=AUTHORIZED_IMPORTS, |
|
planning_interval=10, |
|
) |
|
|
|
document_inspection_tool = TextInspectorTool(model, text_limit) |
|
|
|
def stream_to_gradio( |
|
agent, |
|
task: str, |
|
reset_agent_memory: bool = False, |
|
additional_args: Optional[dict] = None, |
|
): |
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" |
|
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): |
|
for message in pull_messages_from_step( |
|
step_log, |
|
): |
|
yield message |
|
|
|
time.sleep(60) |
|
|
|
final_answer = step_log |
|
final_answer = handle_agent_output_types(final_answer) |
|
|
|
if isinstance(final_answer, AgentText): |
|
jp=hf_chat(None,"google/gemma-2-27b-it",f"以下を日本語に翻訳して:{final_answer.to_string()}") |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content=f"**Final answer:**\n{final_answer.to_string()}\n\n日本語:\n{jp}", |
|
) |
|
elif isinstance(final_answer, AgentImage): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "image/png"}, |
|
) |
|
elif isinstance(final_answer, AgentAudio): |
|
yield gr.ChatMessage( |
|
role="assistant", |
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, |
|
) |
|
else: |
|
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") |
|
|
|
|
|
class GradioUI: |
|
"""A one-line interface to launch your agent in Gradio""" |
|
|
|
def __init__(self, file_upload_folder: str | None = None): |
|
|
|
self.file_upload_folder = file_upload_folder |
|
if self.file_upload_folder is not None: |
|
if not os.path.exists(file_upload_folder): |
|
os.mkdir(file_upload_folder) |
|
|
|
def interact_with_agent(self, prompt, messages, session_state): |
|
|
|
if 'agent' not in session_state: |
|
session_state['agent'] = create_agent() |
|
|
|
messages.append(gr.ChatMessage(role="user", content=prompt)) |
|
yield messages |
|
|
|
|
|
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False): |
|
messages.append(msg) |
|
yield messages |
|
yield messages |
|
|
|
def upload_file( |
|
self, |
|
file, |
|
file_uploads_log, |
|
allowed_file_types=[ |
|
"application/pdf", |
|
"application/vnd.openxmlformats-officedocument.wordprocessingml.document", |
|
"text/plain", |
|
], |
|
): |
|
""" |
|
Handle file uploads, default allowed types are .pdf, .docx, and .txt |
|
""" |
|
if file is None: |
|
return gr.Textbox("No file uploaded", visible=True), file_uploads_log |
|
|
|
try: |
|
mime_type, _ = mimetypes.guess_type(file.name) |
|
except Exception as e: |
|
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log |
|
|
|
if mime_type not in allowed_file_types: |
|
return gr.Textbox("File type disallowed", visible=True), file_uploads_log |
|
|
|
|
|
original_name = os.path.basename(file.name) |
|
sanitized_name = re.sub( |
|
r"[^\w\-.]", "_", original_name |
|
) |
|
|
|
type_to_ext = {} |
|
for ext, t in mimetypes.types_map.items(): |
|
if t not in type_to_ext: |
|
type_to_ext[t] = ext |
|
|
|
|
|
sanitized_name = sanitized_name.split(".")[:-1] |
|
sanitized_name.append("" + type_to_ext[mime_type]) |
|
sanitized_name = "".join(sanitized_name) |
|
|
|
|
|
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) |
|
shutil.copy(file.name, file_path) |
|
|
|
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] |
|
|
|
def log_user_message(self, text_input, file_uploads_log): |
|
return ( |
|
text_input |
|
+ ( |
|
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" |
|
if len(file_uploads_log) > 0 |
|
else "" |
|
), |
|
"", |
|
) |
|
|
|
def launch(self, **kwargs): |
|
with gr.Blocks(theme="ocean", fill_height=True) as demo: |
|
gr.Markdown("""# open Deep Research - free the AI agents! |
|
|
|
DuckDuckGo + [Groq](https://groq.com/) llama-3.3-70b-versatile + 日本語訳(gemma2-27b-it) Please duplicate space(for avoid rate-limit) |
|
|
|
_Built with [smolagents](https://github.com/huggingface/smolagents)_ |
|
|
|
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. |
|
|
|
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨ |
|
|
|
You can try a simplified version below. 👇""") |
|
|
|
session_state = gr.State({}) |
|
stored_messages = gr.State([]) |
|
file_uploads_log = gr.State([]) |
|
chatbot = gr.Chatbot( |
|
label="open-Deep-Research", |
|
type="messages", |
|
avatar_images=( |
|
None, |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", |
|
), |
|
resizeable=True, |
|
scale=1, |
|
) |
|
|
|
if self.file_upload_folder is not None: |
|
upload_file = gr.File(label="Upload a file") |
|
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) |
|
upload_file.change( |
|
self.upload_file, |
|
[upload_file, file_uploads_log], |
|
[upload_status, file_uploads_log], |
|
) |
|
text_input = gr.Textbox(lines=1, label="Your request") |
|
text_input.submit( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input], |
|
).then(self.interact_with_agent, |
|
|
|
[stored_messages, chatbot, session_state], |
|
[chatbot] |
|
) |
|
|
|
demo.launch(debug=True, share=True, **kwargs) |
|
|
|
GradioUI().launch() |