File size: 10,760 Bytes
b97f2de
 
 
636ddd4
b97f2de
 
 
 
e76df21
b97f2de
 
 
 
 
e76df21
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c46637
b97f2de
a379d16
e76df21
b97f2de
a32e93b
afbe63b
 
 
 
 
 
 
 
 
b97f2de
afbe63b
 
 
 
 
a32e93b
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d680d1
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dac1e09
3cfcc42
81bc5b1
dd63eb3
 
8cf72c1
b97f2de
8b2a530
509608d
b97f2de
24525c3
b97f2de
150497a
8b2a530
b97f2de
 
 
 
 
ce510c7
0d680d1
b97f2de
 
 
 
 
 
 
 
 
4ffcfc1
 
 
 
 
 
0c69327
718b72f
4ffcfc1
f691875
4ffcfc1
b97f2de
ff95e5a
b97f2de
e76df21
 
 
 
 
 
 
 
 
 
 
 
 
fe7ee3d
b4f733d
e76df21
 
 
 
9a0b530
e76df21
 
7472016
e76df21
 
 
 
 
 
 
 
 
 
 
 
 
 
b97f2de
 
 
 
4ffcfc1
 
b97f2de
 
 
 
 
4ffcfc1
 
 
 
 
b97f2de
 
4ffcfc1
 
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
 
ec4b275
fbdd017
5eb48a5
188b160
 
9a0b530
480e49a
ec4b275
 
1a257da
a379d16
 
 
 
4ffcfc1
 
b97f2de
 
 
a379d16
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
b97f2de
 
 
 
4ffcfc1
 
 
 
 
a63edd5
b97f2de
a63edd5
4ffcfc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse
import json
import os
import time
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional

import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr

from scripts.reformulator import prepare_response
from scripts.run_agents import (
    get_single_file_description,
    get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
    ArchiveSearchTool,
    FinderTool,
    FindNextTool,
    PageDownTool,
    PageUpTool,
    SimpleTextBrowser,
    VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm

from smolagents import (
    CodeAgent,
    HfApiModel,
    LiteLLMModel,
    Model,
    ToolCallingAgent,
    DuckDuckGoSearchTool
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types

from smolagents import Tool
from huggingface_hub import InferenceClient
def hf_chat(api_key, model, text):
    client = InferenceClient(api_key=api_key)
    messages = [
        {
            "role": "user",
            "content": text,
        }
    ]

    stream = client.chat.completions.create(
        model=model, messages=messages, max_tokens=6000, stream=False
    )

    return stream.choices[0].message.content

AUTHORIZED_IMPORTS = [
    "requests",
    "zipfile",
    "os",
    "pandas",
    "numpy",
    "sympy",
    "json",
    "bs4",
    "pubchempy",
    "xml",
    "yahoo_finance",
    "Bio",
    "sklearn",
    "scipy",
    "pydub",
    "io",
    "PIL",
    "chess",
    "PyPDF2",
    "pptx",
    "torch",
    "datetime",
    "fractions",
    "csv",
]
load_dotenv(override=True)
#login(os.getenv("HF_TOKEN"))

append_answer_lock = threading.Lock()

custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}

user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"

BROWSER_CONFIG = {
    "viewport_size": 1024 * 5,
    "downloads_folder": "downloads_folder",
    "request_kwargs": {
        "headers": {"User-Agent": user_agent},
        "timeout": 300,
    },
    "serpapi_key": os.getenv("SERPAPI_API_KEY"),
}

os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)


model = LiteLLMModel(
    #"deepseek-r1-distill-qwen-32b",
    "llama-3.3-70b-versatile",
    #"gemma2-9b-it", #15000 rate limit,but not good at coding
    api_base="https://api.groq.com/openai/v1",
    custom_role_conversions=custom_role_conversions,
    max_completion_tokens=500,
    api_key=os.getenv("OPENAI_API_KEY")#Groq API
)
model._flatten_messages_as_text = True


text_limit = 1000
ti_tool = TextInspectorTool(model, text_limit)

browser = SimpleTextBrowser(**BROWSER_CONFIG)

WEB_TOOLS = [
    DuckDuckGoSearchTool(),
    #GoogleSearchTool(),
    VisitTool(browser),
    PageUpTool(browser),
    PageDownTool(browser),
    FinderTool(browser),
    FindNextTool(browser),
    ArchiveSearchTool(browser),
    TextInspectorTool(model, text_limit),
]

# Agent creation in a factory function
def create_agent():
    """Creates a fresh agent instance for each session"""
    return CodeAgent(
        model=model,
        tools=[visualizer] + WEB_TOOLS,
        max_steps=10,
        verbosity_level=1,
        additional_authorized_imports=AUTHORIZED_IMPORTS,
        planning_interval=10,
    )

document_inspection_tool = TextInspectorTool(model, text_limit)

def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        for message in pull_messages_from_step(
            step_log,
        ):
            yield message

        time.sleep(60) #for groq

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentText):
        jp=hf_chat(None,"google/gemma-2-27b-it",f"以下を日本語に翻訳して:{final_answer.to_string()}")
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n\n**日本語訳:**\n{jp}",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, file_upload_folder: str | None = None):
        
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)

    def interact_with_agent(self, prompt, messages, session_state):
        # Get or create session-specific agent
        if 'agent' not in session_state:
            session_state['agent'] = create_agent()
            
        messages.append(gr.ChatMessage(role="user", content=prompt))
        yield messages

        # Use session's agent instance
        for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
            messages.append(msg)
            yield messages
        yield messages

    def upload_file(
        self,
        file,
        file_uploads_log,
        allowed_file_types=[
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain",
        ],
    ):
        """
        Handle file uploads, default allowed types are .pdf, .docx, and .txt
        """
        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        # Ensure the extension correlates to the mime type
        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        # Save the uploaded file to the specified folder
        file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        return (
            text_input
            + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0
                else ""
            ),
            "",
        )

    def launch(self, **kwargs):
        with gr.Blocks(theme="ocean", fill_height=True) as demo:
            gr.Markdown("""# open Deep Research - free the AI agents!

It usually fails when You ask any questions to Groq because of the **6000 token limit.**

As my AI advoice,it's ok to use groq like this.but I'm not sure.please use just for research.

DuckDuckGo + [Groq](https://groq.com/) llama-3.3-70b-versatile + 日本語訳(gemma2-27b-it) Please duplicate space(for avoid rate-limit)

_Built with [smolagents](https://github.com/huggingface/smolagents)_

OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.

However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨

You can try a simplified version below. 👇""")
            # Add session state to store session-specific data
            session_state = gr.State({})  # Initialize empty state for each session
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])
            chatbot = gr.Chatbot(
                label="open-Deep-Research",
                type="messages",
                avatar_images=(
                    None,
                    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                ),
                resizeable=True,
                scale=1,
            )
            # If an upload folder is provided, enable the upload feature
            if self.file_upload_folder is not None:
                upload_file = gr.File(label="Upload a file")
                upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
                upload_file.change(
                    self.upload_file,
                    [upload_file, file_uploads_log],
                    [upload_status, file_uploads_log],
                )
            text_input = gr.Textbox(lines=1, label="Your request")
            text_input.submit(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input],
            ).then(self.interact_with_agent,
                # Include session_state in function calls
                [stored_messages, chatbot, session_state],
                [chatbot]
            )

        demo.launch(debug=True, share=True, **kwargs)

GradioUI().launch()