File size: 6,829 Bytes
80cb67e
a1b63cd
 
 
ba1f7e3
a1b63cd
80cb67e
15dc7eb
e1df603
 
a1b63cd
3f28eaf
a1b63cd
e1df603
 
 
 
9224f10
15dc7eb
e1df603
15dc7eb
 
73d9256
 
 
15dc7eb
 
5020793
 
73d9256
15dc7eb
e1df603
 
 
 
 
 
 
 
 
 
15dc7eb
 
e1df603
80cb67e
71926eb
 
 
9224f10
71926eb
9224f10
 
 
 
 
 
0585512
 
 
9224f10
0585512
 
 
 
9224f10
 
0585512
 
 
 
 
 
 
 
9224f10
0585512
9224f10
0585512
 
 
 
 
 
 
 
 
9224f10
 
 
 
 
0585512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1cc86d
9224f10
0585512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9224f10
71926eb
15dc7eb
8030bef
bc68f27
e1df603
00fbbd8
669f26f
3f28eaf
15dc7eb
 
0585512
 
 
 
 
15dc7eb
 
 
 
 
18b6565
 
310263f
18b6565
15dc7eb
 
 
 
 
 
2f62200
 
15dc7eb
 
 
 
 
 
 
 
 
 
 
 
71926eb
15dc7eb
9e121ac
48ca07d
0585512
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
from huggingface_hub import InferenceClient


client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")


def generate_text(messages):
    print("generate_text")
    print(messages)
    generated = ""
    for token in client.chat_completion(messages, max_tokens=50,stream=True):
        content = (token.choices[0].delta.content)
        generated += content
        #print(content)
        #print(''.join(list(content)))
        yield generated
        #print(token.choices[0].delta)
    
    #return generated+"." #no stram version

def call_generate_text(message, history):
    #if len(message) == 0:
    #    messages.append({"role": "system", "content": "you response around 10 words"})
   
    print(message)
    print(history)

    user_message = [{"role":"user","content":message}]
    messages = history + user_message
    try:
        
        assistant_message={"role":"assistant","content":""}
        text_generator = generate_text(messages)

        for text_chunk in text_generator:
            print(f"chunk={text_chunk}")
            assistant_message["content"] = text_chunk
            updated_history = messages + [assistant_message]
            yield "", updated_history

    except RuntimeError  as e:
        print(f"An unexpected error occurred: {e}")
        yield  "",history

head = '''
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web/dist/ort.webgpu.min.js" ></script>
<script type="module">
        import { matcha_tts,env ,start_thread_play_tts} from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/matcha_tts_onnx_en.js";
        window.MatchaTTSEn = matcha_tts
        window.start_threads = async function(){
            //sadly onload unstable
            //console.log("start_threads")
            await start_thread_play_tts();
            await start_multi_line_tts();
        }
</script>

<script>
let is_start_threads = false
let last_chatbot_size = 0
let tts_text_index = 0
let tts_texts = []

const interval = 10

async function start_multi_line_tts() {
  //console.log("start_multi_line_tts")
  //console.log(tts_texts.length)
  if (tts_texts.length > tts_text_index){
  const tts_text = tts_texts[tts_text_index]
  tts_text_index += 1
  console.log(tts_text)
  if (tts_text!=""){
    //console.log("statar await load")
    await window.MatchaTTSEn(tts_text,"/file=models/ljspeech_sim.onnx")
    //console.log("end await ")
  }

  
  }
  setTimeout(start_multi_line_tts, interval);
}


function reset_tts_text(){
    if (is_start_threads == false){
        window.start_threads()
        is_start_threads = true
    }
    console.log("new messages")
    tts_text_index = 0
    tts_texts = []
}
function replaceSpecialChars(text) {
    const pattern = /[^a-zA-Z0-9,.!?-_']/g;
    return text.replace(pattern, ' ');
}


function update_tts_texts(text){
    //console.log(text)
    const replaced_text = replaceSpecialChars(text)
    const new_texts = []
    const splited = replaced_text.split(/[.!?]+\s/);
    for (let i = 0; i < splited.length; i++) {
    const value = splited[i].trim();
    
    if (i === splited.length - 1) {
        if (value.endsWith(".") || value.endsWith("?") || value.endsWith("!")){
            new_texts.push(value);
        }
        //console.log("Last element:", value);
    } else {
        // その他の要素に対する処理
        new_texts.push(value);
    }
    }
    tts_texts=new_texts
    
}

function update_chatbot(chatbot){
    //console.log(chatbot)
    if (chatbot.length!=last_chatbot_size){
        last_chatbot_size = chatbot.length
        reset_tts_text()
    }
    text = (chatbot[chatbot.length -1])["content"]
    update_tts_texts(text)
    
}

window.replaceSpecialChars = replaceSpecialChars

window.update_chatbot = update_chatbot
window.update_tts_texts = update_tts_texts
window.reset_tts_text = reset_tts_text  

</script>
'''

with gr.Blocks(title="LLM with TTS",head=head) as demo:
    gr.Markdown("## A LLM is unstable:The inference client used in this demo exhibits inconsistent performance. While it can provide responses in milliseconds, it sometimes becomes unresponsive and times out.")
    gr.Markdown("## TTS talke a long loading time:Please be patient, the first response may have a delay of up to over 20 seconds while loading.")
    gr.Markdown("**Mistral-7B-Instruct-v0.3/LJSpeech**.LLM and TTS models will change without notice.")
    
    js = """
    function(chatbot){
    window.update_chatbot(chatbot)
    //text = (chatbot[chatbot.length -1])["content"]
    //tts_text = window.replaceSpecialChars(text)
    //console.log(tts_text)
    //window.MatchaTTSEn(tts_text,"/file=models/ljspeech_sim.onnx")
    }
    """
    chatbot = gr.Chatbot(type="messages")
    chatbot.change(None,[chatbot],[],js=js)
    msg = gr.Textbox()
    with gr.Row():
        clear = gr.ClearButton([msg, chatbot])
        submit = gr.Button("Submit",variant="primary").click(call_generate_text, inputs=[msg, chatbot], outputs=[msg,chatbot])

    gr.HTML("""
    <br>
    <div id="footer">
    <b>Spaces</b><br>
     <a href="https://huggingface.co/spaces/Akjava/matcha-tts_vctk-onnx" style="font-size: 9px" target="link">Match-TTS VCTK-ONNX</a> | 
     <a href="https://huggingface.co/spaces/Akjava/matcha-tts-onnx-benchmarks" style="font-size: 9px" target="link">Match-TTS ONNX-Benchmark</a> | 
     <a href="https://huggingface.co/spaces/Akjava/AIChat-matcha-tts-onnx-en" style="font-size: 9px" target="link">AIChat-Matcha-TTS ONNX English</a> | 
     
      <br><br>
    <b>Credits</b><br>
    <a href="https://github.com/akjava/Matcha-TTS-Japanese" style="font-size: 9px" target="link">Matcha-TTS-Japanese</a> | 
    <a href = "http://www.udialogue.org/download/cstr-vctk-corpus.html" style="font-size: 9px"  target="link">CSTR VCTK Corpus</a> |
    <a href = "https://github.com/cmusphinx/cmudict" style="font-size: 9px"  target="link">CMUDict</a> |
    <a href = "https://huggingface.co/docs/transformers.js/index" style="font-size: 9px"  target="link">Transformer.js</a> |
    <a href = "https://huggingface.co/cisco-ai/mini-bart-g2p" style="font-size: 9px"  target="link">mini-bart-g2p</a> |
    <a href = "https://onnxruntime.ai/docs/get-started/with-javascript/web.html" style="font-size: 9px"  target="link">ONNXRuntime-Web</a> |
    <a href = "https://github.com/akjava/English-To-IPA-Collections" style="font-size: 9px"  target="link">English-To-IPA-Collections</a> |
    <a href ="https://huggingface.co/papers/2309.03199" style="font-size: 9px"  target="link">Matcha-TTS Paper</a>
    </div>
    """)
    
    msg.submit(call_generate_text, [msg, chatbot], [msg, chatbot])

import os
dir ="/home/user/app/"
dir = "C:\\Users\\owner\\Documents\\pythons\\huggingface\\mistral-7b-v0.3-matcha-tts-en"
demo.launch(allowed_paths=[os.path.join(dir,"models","ljspeech_sim.onnx")])